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SUMMARY
We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired
tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Inte-
gratedmulti-omicsanalysis illustratedcancerbiologydownstreamofgenetic aberrationsandhighlightedonco-
genic rolesofFAT1mutation,RB1deletion, andchromosome5q loss. Twoprognosticbiomarkers,HMGB3and
CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regula-
tionof cell junction-relatedgenes. Immune landscapecharacterization revealedanassociationbetweenZFHX3
mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA
damage response activity via inhibition of the cGAS-STINGpathway.Multi-omics clustering identified four sub-
typeswithsubtype-specific therapeutic vulnerabilities.Cell lineandpatient-derivedxenograft-baseddrug tests
validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valu-
able resource as well as insights to better understand SCLC biology and improve clinical practice.
INTRODUCTION

Lung cancer is the leading cause of cancer mortality worldwide.1

Small cell lung cancer (SCLC) accounts for 15% of all lung can-
184 Cell 187, 184–203, January 4, 2024 ª 2023 Elsevier Inc.
cers and is the most malignant and deadliest subtype.2 The

overall 5-year survival rate of SCLC is only 5%, making it the

sixth leading cause of cancer-related death.3 SCLC is an aggres-

sive neuroendocrine (NE) carcinoma characterized by rapid
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proliferation, strong metastatic proclivity, and striking therapeu-

tic resistance, which contribute to its extremely poor prognosis.4

SCLC is in stark contrast with non-small cell lung cancer

(NSCLC) in clinicopathology, biology, and treatment options.5–8

Although targeted therapies and immunotherapies have tremen-

dously improved the outcomes of NSCLC patients for molecu-

larly defined subtypes, progress in the treatment of SCLC has

been slow. Patient survival has not significantly improved over

the last few decades, and SCLC still remains outside the realm

of precision medicine.

Previous genomic studies revealed that inactivation of TP53

and RB1 occurs frequently in SCLC,9–11 but mutational profiling

did not seem to establish molecular subtypes or identify action-

able therapeutic targets, likely because some gene alterations

identified at the DNA level do not result in changes in gene/pro-

tein expression. The consensus definition of SCLC subtypes

based on a transcription factor expression profile has been re-

ported previously,12,13 but its direct impact on subtype-based

treatment is limited. A major barrier in the SCLC field is the scar-

city of tumor samples available for detailed molecular character-

ization, especially at the protein level. Therefore, there is an ur-

gent need for the collection of high-quality specimens to better

understand the molecular basis of this cancer and accelerate

both clinical and basic research.

Here, we performed an integrated genomic, transcriptomic,

proteomic, and phosphoproteomic analysis of 112 Chinese

SCLC specimens following the guidelines established by the

Clinical Proteomic Tumor Analysis Consortium (CPTAC).14 Our

comprehensive proteogenomic study explored the functional

consequences of genomic aberrations, cataloged SCLC-associ-

ated molecular characteristics, identified actionable prognostic

biomarkers, and provided a better understanding of patient

stratification with personalized therapeutic strategies. The un-

derlying datasets also furnish an extensive resource to support

further research in SCLC.

RESULTS

Overview of SCLC proteogenomic profiling in the
Chinese population
To characterize the proteogenomic landscape of SCLC in China,

112 treatment-naive primary SCLC tumors and paired normal

adjacent tissues (NATs) (Tongji University [TU]-SCLC cohort)

from surgical resection were collected prospectively under stan-

dardized protocols. The clinicopathological characteristics are
Figure 1. Genomic landscape of TU-SCLC cohort

(A) Experimental workflow of SCLC proteogenomic profiling.

(B) Genetic profile and associated clinicopathologic features of all the 112 SCLC p

by asterisk.

(C) Comparison of mutational frequencies between TU-SCLC cohort and other p

(D) Kaplan-Meier curves for overall survival based on TMB (log rank test).

(E) Clustering of SCLC tumors based on proportions of mutation signatures. Each

smoking, dMMR, and APOBEC).

(F) Kaplan-Meier curves for overall survival of smoking-dominant and dMMR-do

(G) Comparison of TMB and predicted neoantigen between smoking-dominant a

(H) Comparison of mutation rates for TP53, FAT1, and MMR-related genes (MSH2

(Wilcoxon ranked-sum test).

See also Figure S1 and Table S1.
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summarized in Table S1. All samples were cryo-pulverized and

aliquoted for molecular profiling using whole-exome sequencing

(WES), RNA sequencing (RNA-seq), and isobaric tandem mass

tag (TMT) labeling-based global proteomics and phosphopro-

teomics (Figure 1A; Table S1). In total, 28,471 nonsynonymous

somatic mutations and 27,080 somatic copy-number alterations

(SCNAs) were identified. TMT-based proteomic analysis identi-

fied 11,209 proteins, and phosphoproteomic analysis identified

62,881 confidently localized phosphosites from 9,373 phospho-

proteins. High data reproducibility and technical quality were

demonstrated across the entire TMT sets (Figures S1A–S1F). Ex-

amination of gene-wise mRNA-protein correlation indicated a

strikingly higher median value for tumors when compared with

NATs (R = 0.5 vs. 0.07, Spearman’s correlation) (Figure S1G),

similar to a previous report on lung adenocarcinoma (LUAD).5

Furthermore, tumors displayed a higher sample-wise correlation

(0.31) than NATs (0.21) (Figure S1H).

Somatic alterations and mutational profiles in SCLC
The most frequently mutated genes in TU-SCLC cohort were

TP53 (72%) and RB1 (56%) (Figure 1B). Other alterations with

mutation frequency greater than 10% were found in genes

encoding chromatin-modifying enzymes (KMT2C, KMT2D,

CREBBP), protocadherin genes (FAT1, FAT4), transcriptional

regulators (ZFHX3, NCOR2, CRTC1), and NOTCH family genes

(NOTCH1/2/3). With the integrative analyses of copy-number

variation, we found only 9 (8%) of the tumors showed no alter-

ations in TP53 and RB1 at the genomic level (Figures 1B and

S1I), supporting the essential role of TP53 and RB1 inactivation

in SCLC tumorigenesis. Despite the dominant role of TP53

and RB1 inactivation in SCLC, the mutation rate of TP53 in

TU-SCLC cohort was relatively lower than that observed in

cohorts predominantly from the Western populations,9,11 yet it

was comparable to that in a Japanese cohort10 (Figure 1C). The

mutation rate of RB1 in TU-SCLC cohort was lower than that in

the George et al. cohort,9 but showed no significant difference

with the other two cohorts. Additionally, we observed a high

ZFHX3mutation frequency (19%) in TU-SCLCcohort (Figure 1C).

TU-SCLC had a median tumor mutation burden (TMB) of 5.45

nonsynonymousmutations per million base pairs. TMB-high and

TMB-low were determined based on this median cutoff value,

and the mutation rates of TP53, KMT2C, FAT4, and GNAS in

TMB-high group were significantly higher than those in TMB-

low group (Figure S1J). TMB-high patients tended to have a bet-

ter overall survival (OS) (Figure 1D). This result is consistent with
atients. MutSigCV-based significantly mutated genes (q < 0.05) are annotated

ublished SCLC cohorts (Fisher’s exact test).

cluster group is named according to the dominant mutation signature (that is,

minant patients (log rank test).

nd dMMR-dominant tumors (Wilcoxon ranked-sum test).

,MSH6, and PMS2) between smoking-dominant and dMMR-dominant tumors
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Figure 2. Impacts of genetic aberrations on proteogenomic features

(A) Correlations of CNAs to mRNA (left) and protein (right) abundance. Significant positive (red) and negative (blue) correlations (false discovery rate [FDR] < 0.05,

Spearman’s correlation) are indicated. The number of significant cis and trans events is shown at the bottom, blue bars representing associations specific to

mRNA or protein and black bars representing associations common to both mRNA and protein.

(B) Venn diagrams depicting the cis-cascading effects of SCNAs (CAGs, cancer-associated genes).

(C) Enriched gene ontology (GO) biological processes (BP) for the overlapped genes of cis CNA-mRNA, CNA-protein, and CNA-phosphoprotein as well as

differentially expressed at protein level in tumors compared with NATs.

(legend continued on next page)
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previous report,15 suggesting the potential prognostic value of

TMB in SCLC.

We identified four mutational signatures (Sig1–4) based on the

frequencies of mutated trinucleotide sequence motifs (Fig-

ure S1K). Tobacco mutagens exposure was best matched

with Sig1 and Sig2, defective DNA mismatch repairs (dMMR)

were associated with Sig3, and Sig4 bored the signature of

APOBEC cytidine deaminases. According to the mutational

signature contributions, 93 (83%) patients were classified as

smoking-dominant, 17 (15%) were dMMR-dominant, and only

2 (2%) were APOBEC-dominant (Figure 1E). Importantly,

dMMR-dominant patients showed a worse OS (Figure 1F),

whereas smoking-dominant tumors had significantly higher

TMB and neoantigen load (Figure 1G). We also observed less

TP53 mutations, along with more FAT1 and mismatch repair

(MMR) pathway gene (MSH2, MSH6, PMS3) mutations in

dMMR-dominant tumors when compared with smoking-domi-

nant ones (Figure 1H). Overall, our results reinforce the well-

recognized association of tobacco carcinogens with SCLC

tumorigenesis and shed new light on the role of DNA repair de-

fects in SCLC development.

Investigating the impact of genomic aberrations by
integrated analyses
SCNA analysis identified amplifications in chromosomes 1p, 1q,

3q, 5p, 8q, 14p, 14q, 18p, and 18q, along with deletions in

chromosomes 3p, 4p, 4q, 5q, 13q, 15q, 16q, 17p, and 17q

(Figures S2A and S2B; Table S2), as previously described in

SCLC.9,16,17 We examined the impact of SCNAs on mRNA, pro-

tein, and phosphoprotein abundance in both cis- and trans-ef-

fects (Figure 2A). A total of 5,363, 2,177, and 386 significant pos-

itive cis-correlations were observed for mRNA, protein, and

phosphoprotein, respectively (Figure 2B). Among the 261 signif-

icant cis-effects overlapping across all three omics, 223 proteins

showed differential abundance between tumors and NATs

(Table S2), which were enriched in mRNA processing, DNA

repair, and regulation of mitotic cell cycle processes (Figure 2C).

We found a similar attenuation trend based on a reference list of

593 cancer-associated genes (CAGs) (Figure 2B). CNA regions

with trans-associations were observed on chromosome 5q (Fig-

ure 2A). Most of the trans-effects were negatively correlated with

5q and showed an obvious attenuation from mRNA to protein

expression (Figure S2C). These 5q-anticorrelated proteins

were converged on multiple biological processes, including

mitotic cell cycle phase transition (Figure S2D). Our multi-omics

data suggested that 5q loss was associated with high expres-

sion of genes involved in DNA replication, DNA repair, and cell

cycle progression (Figure S2E). Thus, loss of 5q may promote

SCLC tumorigenesis via CNA trans-effects.
(D) Barplot showing the total number of trans-correlated events at mRNA and p

SCNAs that are significantly associated with patient survival (log rank test, p < 0

(E) Venn diagrams depicting mRNA/proteins with positive (top) or negative (botto

(F) Enriched KEGG pathways for proteins with positive or negative trans CNA-pr

(G) Comparison of mRNA and protein abundance between tumors and NATs for

(H) GSEA plots for epithelial mesenchymal transition (EMT) and focal adhesion p

(I) Comparison of protein abundance between FAT1-mutant and FAT1-WT tumo

(J) Comparison of VIM phophosites abundance between FAT1-mutant and FAT1

See also Figure S2 and Table S2.
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We focused on identifying CAGs with the top 10 protein-level

trans events (Figure 2D; Table S2). Among them, NKX2-1 (also

known as thyroid transcription factor 1 [TTF-1]) has long been

considered as a marker of lung cancer, and several CNA genes

includingGNAS, AURKA, SRC, and TOP1 are widely reported as

proto-oncogenes or drug targets in SCLC. Notably, tumor sup-

pressor RB1 showed copy-number deletion trans-effects mainly

at protein level but barely at the mRNA level. Among the 691 sig-

nificant trans-affected proteins, 524 showed positive correlation

withRB1 deletion andwere enriched in pathways including gran-

ulocyte activation, response to interferon-gamma, actin filament

organization, and cell adhesion, whereas the other 167 negative-

correlated proteins were mainly involved in DNA conformation

change, mRNA processing, and RNA splicing pathways

(Figures 2E and 2F). Further trans-effects at phosphoprotein

level confirmed these pathways affected by RB1 deletion (Fig-

ure S2F). Additionally, we found that RB1 deletion significantly

correlated with worse survival (p = 0.0021; Figure S2G). These

data demonstrate that protein-level trans-effects strongly reflect

the tumorigenic impact of CNAs.

Next, we examined the impacts of somatic mutations on their

cognate gene products and identified three genes (TP53, FAT1,

and GNAS) with significant cis-effect (Figures S2H and S2I).

Intriguingly, FAT1, which is generally considered as a tumor sup-

pressor,18,19 displayed increased mRNA and protein expression

in FAT1-mutant tumors (Figure S2H). However, FAT1 protein

expression was significantly downregulated in FAT1-wild-type

(WT) tumors when compared with NATs, despite of elevated

mRNA abundance (Figure 2G). Proteomic-based gene set

enrichment analysis (GSEA) linked FAT1 mutation with the

upregulation of epithelialmesenchymal transition (EMT) and focal

adhesion pathways (Figure 2H). Proteins involved in EMT,

mesenchymal differentiation, integrins, extracellular matrix

(ECM), and focal adhesion pathways were upregulated in

FAT1-mutant tumors (Figure 2I). Moreover, our phosphoproteo-

mic data demonstrated an increase of 24 VIM phosphosites in

FAT1-mutant tumors (Figure 2J), and these elevated phospho-

sites were predominantly involved in cytoskeletal reorganization

and cell motility processes as summarized in PhosphoSitePlus

database.20 Hence, our proteogenomic data indicate that FAT1

loss of function may promote an EMT phenotype in SCLC, which

merits further validation.

Tumor-NAT comparisons reveal SCLC-associated
proteomic events
Principal-component analysis (PCA) showed clear discrepancy

between tumors and NATs at mRNA, protein, and phosphoryla-

tion levels and revealed greater heterogeneity of tumors relative

to NATs (Figure S3A). Herein, we focused on the abundance
rotein levels. The top 10 protein-level trans events for CAGs are highlighted.

.05) are annotated by asterisk.

m) trans CNA-mRNA and CNA-protein correlations with RB1 deletion.

otein correlations with RB1 deletion.

FAT1-mutant and FAT1-WT groups separately (Wilcoxon signed-rank test).

athways in FAT1-mutant vs. FAT1-WT comparisons.

rs for annotated pathways (*p < 0.05, **p < 0.01, Wilcoxon ranked-sum test).

-WT tumors (Wilcoxon ranked-sum test).
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of proteins and phosphosites with no missing values and per-

formed differential analysis between tumors and NATs (Figures

3A and 3F; Table S3). Enrichment analysis of differentially ex-

pressed proteins revealed upregulation of pathways such as

DNA replication, spliceosome, cell cycle, and DNA repair, as

well as downregulation of complement and coagulation cas-

cades, ECM-receptor interaction, focal adhesion, cholesterol

metabolism, and arachidonic acid metabolism pathways in tu-

mors (Figure 3B). After controlling for stromal and immune con-

tent, 138 out of 497 upregulated proteins remained significantly

upregulated by more than 2-fold in SCLC. Among these, we

focused on 25 proteins with over 2-fold elevated expression in

over 90% of all tumor-NAT pairs, which were defined as

SCLC-associated proteins (Figure 3C). These proteins including

microtubule dynamics-related proteins STMN1/2, DNA damage

repair proteins TMA7 and PCNA, and transcriptional regulators

(HMGB3, PHF6, DDX5, and SUPT16H) were negatively corre-

lated with patient survival (Figure S3B). Experimentally, knock-

down of STMN1 as well as TMA7 significantly reduced cell pro-

liferation in H345 cell lines, suggesting their oncogenic role in

SCLC (Figures S3C and S3D). Most proteins changed similarly

in tumor-NAT comparisons for both pure SCLC and combined

SCLC (CSCLC) (Figure 3D). However, 22 proteins, mainly

involved in NE-related processes, were increased specifically

in pure SCLC tumors (Figure 3E), which was consistent with

higher NE scores of pure SCLC (Figure S3E).

Furthermore, we observed 1,667 phosphosites with more

than 2-fold upregulation in tumors when compared with

NATs, among which 1,357 (81%) had greater changes in

phosphosite abundance than in corresponding protein abun-

dance (Figure 3G). We next inferred kinase activity based on

the phosphorylation levels of its substrates and the corre-

sponding kinase activating sites. Phosphosite-specific signa-

ture enrichment analysis (PTM-SEA)21 identified 19 kinases

with increased activity in SCLC (Figure 3H), among which 5 ki-

nases displayed elevated expression of their activating sites,

including CHEK1, ATR, ATM, CDK2, and GSK3A (Figure 3I).

Moreover, these kinases had greater changes for tumor-NAT

comparisons in phosphosite abundance than in corresponding

protein abundance (Figure S3F). Specifically, CHEK1 is known

to be critical for G2/M checkpoint in response to genotoxic

stress.22 We found CHEK1 protein and its S317 phosphosite
Figure 3. Proteogenomic alterations associated with tumorigenesis an

(A) Volcano plot depicting differentially expressed proteins between tumors and

(B) Representative KEGG pathways for 2-fold increased and decreased proteins

(C) Boxplot showing log2 fold change between tumors and paired NATs for SCL

Protein Atlas.

(D) Scatterplot depicting comparison of protein changes between tumors and pa

(E) Enriched GO terms for the proteins upregulated in pure SCLC but downregul

(F) Volcano plot depicting differentially expressed phosphosites between tumor

pathways are annotated.

(G) Scatterplot depicting comparison of abundance changes between phosphos

rank test).

(H) Significant (FDR < 0.05) kinase signatures between tumors and paired NATs

(I) Diagram showing kinases with increased activity inferred from the phosphoryl

(J) Dotplot showing themedian log2 fold change of kinase substrates phosphoryla

between tumors and paired NATs, respectively.

See also Figure S3 and Table S3.
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level were increased in tumors, accompanied by elevated

expression of substrates involved in cell cycle arrest and

DNA damage response (DDR), such as CDC25C S216,

TP53BP1 S1678, and TP53 S15 (Figure 3J). Furthermore,

high levels of CHEK1 and the S317 phosphorylation were

significantly associated with worse patient survival (Figures

S3G and S3H).

The proteomic data identified a total of 8 cancer-testis (CT) an-

tigens highly expressed in tumors (STAR Methods; Figure S3I).

Unlike predicted neoantigens that were enriched in TMB-high

samples, CT antigens were widely distributed independent of

TMB. Moreover, compared with other CPTAC studies like

LUAD5 and colon cancer,23 the percentage of CT antigens pres-

ence was relatively higher in SCLC. These proteomics-identified

CT antigens may serve as targets for potential cancer vaccines.

Functional analyses of identified proteins associated
with survival
We performed supervised analysis to identify prognostic bio-

markers and revealed 16 differentially expressed proteins that

were associated with patient survival (Figures 4A and S4A;

Table S4). Among them, HMGB3 showed elevated expression

in tumors and was correlated with worse survival, whereas

CASP10 showed decreased expression and was associated

with a better prognosis. These results were further validated by

immunohistochemistry (IHC) assay on samples from the data

producing TU-SCLC cohort and another independent SCLC

cohort (n = 111) (Figures 4B–4D and S4B–S4D; Table S4), con-

firming their potential prognostic value in SCLC.

HMGB3 belongs to high-mobility group superfamily, which

binds to nucleosomes and participates in DNA replication,

recombination, repair, and transcription.24 High expression of

HMGB3 is observed in many cancers, and correlated with drug

resistance and poor patient survival.25,26 However, its expres-

sion or function in SCLC has not been reported. Since HMGB3

is upregulated in SCLC, we speculated that HMGB3 may func-

tion as an oncogenic driver in SCLC. Indeed, overexpression

of HMGB3 in H345 cells increased cell migration, whereas

HMGB3 knockdown led to reduced cell migration (Figures 4E

and 4F).

As HMGB3 is reported as aDNA-binding protein that regulates

gene transcription, we overexpressed HMGB3 in H345 cells and
d prognosis

paired NATs (Wilcoxon signed-rank test, Benjamini-Hochberg [BH] adjusted).

.

C-associated proteins annotated with potential clinical utilities by the Human

ired NATs in two SCLC histological types (CSCLC, combined SCLC).

ated in CSCLC between tumors and paired NATs.

s and paired NATs (Wilcoxon signed-rank test, BH adjusted). Representative

ites and their corresponding proteins (BH adjusted p < 0.01, Wilcoxon signed-

assessed by PTM signature enrichment analysis (PTM-SEA).

ation levels of its substrates and the corresponding kinase activating sites.

tion. Pink and blue colors indicate upregulated or downregulated phosphosites
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conducted chromatin immunoprecipitation sequencing (ChIP-

seq) analysis to identify potential HMGB3 target genes. Enrich-

ment analysis revealed that genes bound by HMGB3 were

involved in pathways controlling cell migration phenotypes,

such as adherens junction, tight junction, and focal adhesion

(Figures S4E and S4F). Among these, we focused on 5 genes

previously reported to promote cancer cell migration,27–31

includingCLDN10,PKP2, ITGB4,VTN, and LAMC2 (Figure S4G).

Consistent with the ChIP-seq results, HMGB3 overexpression

led to increased expression of these genes at mRNA level

(Figure 4G). Thus, we hypothesized that HMGB3 might regulate

the transcription of CLDN10, PKP2, ITGB4, VTN, and LAMC2,

by which HMGB3 contributes to the high mobility of SCLC

cells. As expected, knockdown of CLDN10, PKP2, ITGB4,

VTN, or LAMC2 significantly reduced cell migration in both

parental and HMGB3-overexpressed H345 cells (Figures 4H

and S4H). Our results indicate that HMGB3 is a robust prog-

nostic biomarker and functions as an oncogenic factor in

SCLC via transcriptional regulation of cell junction-related genes

(Figure 4I).

Immune landscape of TU-SCLC cohort
ESTIMATE immune score32 was used to evaluate the levels of

immune cell infiltration, and our results suggested that immune

cell infiltration was significantly associated with gender, to-

bacco smoking, TNM stages, and patient survival (Figures

S5A and S5B; Table S5). Unsupervised clustering based on

xCell-derived cell type enrichment scores33 for both tumors

and NATs identified three immune clusters including hot-tu-

mor-enriched, cold-tumor-enriched, and NAT-enriched sub-

types (Figure 5A). Most tumors belonged to immune-cold sub-

type and were associated with worse prognosis (Figure 5B).

Intriguingly, immune-cold tumors exhibited higher NE scores

(Figure 5C), and there was a significant inverse correlation be-

tween immune scores and NE scores (R = �0.59, Spearman’s

correlation). This further suggests a linkage between immune-

cold tumors and the NE phenotype.34,35 Additionally, im-

mune-hot subtype was characterized by stronger signatures

of both cytotoxic immune cells (CD8+ T cells, natural killer

cells, activated dendritic cells [DCs], and M1 macrophages)

and immune inhibitory cells (regulatory T cells and M2 macro-

phages) and showed upregulation of multiple immune-related

pathways including interferon-gamma response, antigen pro-

cessing and presentation, and natural killer cell-mediated cyto-
Figure 4. Identification and validation of proteomic prognostic biomar

(A) Diagram representing 16 candidate prognostic proteins.

(B) Representative hematoxylin and eosin (H&E) and immunohistochemical (IHC)

(C) Kaplan-Meier curves for overall survival based on HMGB3 proteomic abunda

(D) Kaplan-Meier curves for overall survival based on HMGB3 immunostaining s

(E and F) The impacts of HMGB3 overexpression (E) or knockdown (F) on SCLC

HMGB3 knockdown by siRNA in H345 cells were generated and validated bywest

represented as mean ± SEM (Student’s t test), ***p < 0.001. (scale bars, 50 mm.)

(G) Real-time qPCR validation of representative HMGB3 target genes in H345 ce

mean ± SEM (Student’s t test), *p < 0.05, **p < 0.01, ***p < 0.001.

(H) The impacts of CLDN10, PKP2, ITGB4, VTN, and LAMC2 knockdown on SC

depletion efficiency was validated by real-time qPCR for each gene. Transwell

mean ± SEM (Student’s t test), *p < 0.05, **p < 0.01, ***p < 0.001. (scale bars, 50

(I) Schematic work model representing the role of HMGB3 in SCLC cell migration

See also Figure S4 and Table S4.
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toxicity (Figure 5A). T cell markers (CD3D, CD8A), MHC mole-

cules, stimulatory and inhibitory immune modulator protein

signatures, cytolytic activity (CYT score; STAR Methods),36 as

well as immune checkpoint molecules (CTLA4, PD-L1, PD-1,

and IDO1) expression were also upregulated in immune-hot

when compared with immune-cold tumors (Figure 5A). Thus,

we speculated that immunotherapies may benefit this SCLC

population of immune-hot subtype.

Notably, we observed a significant enrichment of ZFHX3 mu-

tation in immune-hot tumors (Figure 5D). Tumors harboring

ZFHX3 mutation presented higher immune scores and TMB

when compared with ZFHX3-WT tumors (Figures 5E and 5F),

suggesting an association of ZFHX3 mutation with elevated tu-

mor immunogenicity. Patients with ZFHX3 mutation appeared

to have better survival than ZFHX3-WT patients (Figure S5C).

Proteins significantly upregulated in ZFHX3-mutant samples

were enriched in immune pathways, including response to inter-

feron-gamma and antigen processing and presentation (Fig-

ure S5D). Consistently, MHC molecules, stimulatory and inhibi-

tory immune modulators, as well as xCell-derived CD4+, CD8+

T cell, DC, and M1 macrophage signatures were upregulated

in ZFHX3-mutant tumors (Figures 5G and 5H), whereas

ZFHX3-mutant-associated NATs showed no statistical differ-

ence in these immune cells. Thus, we linked ZFHX3 mutation

to immune activation behavior and speculated ZFHX3 mutation

as a potential predictive biomarker for immunotherapy. In sup-

port of this hypothesis, we collected 12 pre-treatment samples

fromSCLCpatients received neoadjuvant PD-1/PD-L1 blockade

combined with chemotherapy in our center, involving 2 ongoing

phase II trials (NCT04539977 and NCT04542369). Major patho-

logic response (MPR) was used to assess pathologic response

of neoadjuvant immunotherapy efficacy, which is defined as

having no more than 10% residual tumors after therapy. Among

them, 5 patients were categorized as MPR, and 7 patients were

categorized as non-MPR. WES results suggested that 3 patients

had ZFHX3mutation, and it is worth noting that all the 3 patients

(100%) with ZFHX3mutation belonged to beMPR, whereas only

2 WT (22%) patients were MPR (Fisher’s exact test, p = 0.045)

(Figures 5I and 5J). Similarly, the number of residual tumor cells

in the ZFHX3-mutant group was significantly lower than the

ZFHX3-WT group among these 12 clinical trial patients (Fig-

ure 5K). These results support our hypothesis and indicate

that patients with ZFHX3 mutation might benefit more from

immunotherapy.
kers

staining images for HMGB3 on tumors and paired NATs (scale bars, 60 mm).

nce or immunostaining scores (log rank test).

cores in an independent SCLC cohort (n = 111) (log rank test).

cell migration. Ectopically expressing FLAG-tag empty vector or HMGB3 and

ern blot. Transwell migration assays of indicated cells weremeasured. Data are

lls overexpressing HMGB3 compared with vector control. Data are shown as

LC cell migration. siRNA transfection was performed in H345 cells, and the

migration assays of indicated cells were measured. Data are represented as

mm.)

.
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To further explore potential determinants of immune-cold

tumors, we performed correlation analysis using the immune

scores and proteomic data. As expected, immune-related path-

ways showedpositive correlations,whereasDNA replication, cell

cycle, and DNA damage repair pathways were negatively corre-

lated with the immune scores (Figure 5L). Since the deficiency of

DDR in cancer cells is critical for tumor immunogenicity,37,38 and

SCLCcells are especially dependent on highDDRactivity for sur-

vival because of extremely high genomic instability and replica-

tion stress, we thus speculated that elevated activity of DDR

may lead to an immunosuppressive response in SCLC.We found

negative associations between specific DNA repair pathway

scores39 and immune scores (Figure S5E). DNA repair proteins

(PARP1, MSH2,MSH6, XRCC1, XRCC5, XRCC6) and DNA dam-

age checkpoints (CHEK1,WEE1, AURKA/B) were also increased

in immune-cold tumors at protein abundance as well as phos-

phorylation levels (Figures S5F and S5G). In addition, the cyto-

solic DNA-sensing pathway displayed strongly positive correla-

tion with immune scores (Figures 5L and 5M), indicating that

the cGAS-STING pathway, a critical innate immune pathway

activated by cytoplasmic double-strand DNA, might be associ-

ated with immune infiltration. Indeed, STING pathway activity

and the expression of downstream proinflammatory chemokines

CCL5 and CXCL10 were significantly correlated with immune

features (Figures 5N and S5H). The cGAS-STING pathway-

related proteins were upregulated in immune-hot tumors (Fig-

ure S5I), and their higher abundance was associated with better

survival (Figure S5J). Moreover, cGAS, STING1, CCL5, and

CXCL10 protein expression showed significantly negative corre-

lation with DDR activity, and STING1 protein expression was

inversely correlated with the expression of DNA repair proteins

and DNA damage checkpoints (Figure S5K). Together, our pro-

teogenomic data indicate that elevated DDR activity may

contribute to immune suppression by attenuating the activation

of the cGAS-STING pathway in SCLC.

Multi-omics subtypes with distinct biological features
We applied non-negative matrix factorization (NMF)-based un-

supervised clustering by integrating mRNA, protein, and phos-

phorylation data from 107 SCLC tumors and grouped them
Figure 5. Immune landscape of TU-SCLC cohort

(A) Heatmap illustrating three immune clusters based on xCell-derived cell signa

modulators, activity scores, and pathways that were differentially regulated in im

(B) Kaplan-Meier curves for overall survival based on immune subtypes (log rank

(C) Comparison of NE scores between cold-tumor-enriched and hot-tumor-enric

(D) Comparison of ZFHX3 mutation rate between immune-cold and immune-hot

(E and F) Comparison of immune scores (E) and TMB (F) between ZFHX3-mutan

(G) Heatmap illustrating differentially expressed proteins between ZFHX3-mutant

immune modulators (Wilcoxon ranked-sum test).

(H) Comparison of xCell-derived immune cell signatures between ZFHX3-mutant

effector memory T cells; Tcm, central memory T cells; DC, dendritic cell.

(I) The association between ZFHX3 mutation and immunotherapy response obse

(J) Representative H&E images for MPR in patient with ZFHX3 mutation, and no

notherapy combined with chemotherapy (scale bars, 100 mm).

(K) Comparison of residual tumor cells between ZFHX3-mutant and ZFHX3-WT g

(L) Barplot showing normalized enrichment scores for the top KEGG pathways c

(M) GSEA plot for cytosolic DNA-sensing pathway correlated with immune score

(N) Scatterplot showing Spearman’s correlation of immune scores and ssGSEA-

See also Figure S5 and Table S5.
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into four clusters (Figures 6A and S6A; Table S6). Significant as-

sociations between the multi-omics subtypes and clinical pa-

rameters were presented in Figure S6B. The nmf1 subtype was

primarily enriched in cell cycle, DNA damage, chromatin organi-

zation, and epigenetic regulation pathways, suggesting a sub-

group with a high proliferation rate. The nmf2 subtype had fewer

signature proteins or phosphosites but showed the highest TMB

(Figure 6B). The nmf3 subtype was associated with ECM-recep-

tor interaction, ECMorganization, and focal adhesion pathway at

protein level. Remarkably, phosphoproteomic rather than tran-

scriptomic or proteomic data showed increased activity of

signaling by receptor tyrosine kinases (RTKs) in the nmf3 sub-

type. Finally, the nmf4 subtype was distinguished by high

expression of MYC targets and enrichment of RNA metabolism

pathways, aswell as characterized by higher chromosome insta-

bility (CIN), stemness score, and mRNA-protein correlation

(Figures 6A and 6B). Similarly, subtype-specific pathway enrich-

ment analysis also demonstrated distinct molecular features

among the four subtypes (Figure S6C).

Each subtype showed distinct profiles of CNA (Figure S6D).

Deletion of TP53, RB1, and FAT1 was significantly enriched in

the nmf1 and nmf2 subtypes, and ZFHX3 deletion was mostly

restricted to the nmf1 subtype. By contrast, the oncogene

AURKA and GNAS amplification were preferentially associated

with the nmf4 subtype (Figure 6C).

We examined the patterns of transcription factors ANPY

(ASCL1, NEUROD1, POU2F3, and YAP1) expression across

the four subtypes based on mRNA expression and found clear

separation (Figures 6D and 6E). The nmf1 subtype showed

high expression of ASCL1, NEUROD1, or both, consistent

with previous studies that many SCLC tumors co-express

ASCL1 and NEUROD1.40–42 High expression of POU2F3 was

mainly restricted to the nmf4 subtype and was mutually exclu-

sive with ASCL1 and NEUROD1. The expression of YAP1 was

very low compared with other three transcription factors, even

though YAP1 expression was relatively higher in the nmf3 and

nmf4 subtypes. In addition, we observed the highest NE

scores in the nmf1 subtype (Figure 6F), accompanied by

high protein expression of NE markers SYP, CHGA, NCAM1,

and INSM1 (Figure 6D). The nmf3 subtype displayed the
tures. Cell type compositions, mRNA and protein abundance of key immune

mune-hot and immune-cold subtypes are illustrated.

test).

hed subtypes (Wilcoxon ranked-sum test).

tumors (Fisher’s exact test).

t and ZFHX3-WT tumors (Wilcoxon ranked-sum test).

and ZFHX3-WT tumors involved in MHC molecules, stimulatory and inhibitory

and ZFHX3-WT tumors (*p < 0.05, **p < 0.01, Wilcoxon ranked-sum test). Tem,

rved in ongoing clinical trials.

n-MPR in patient without ZFHX3 mutation who received neoadjuvant immu-

roups from clinical trials patients (*p < 0.05, Wilcoxon ranked-sum test).

orrelated (red) or anticorrelated (blue) with immune scores.

s.

derived STING pathway activity.
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highest EMT score (Figure 6G), which was associated with

SCLC metastasis and chemoresistance.43,44 Our proteomic

data also showed that the nmf3 subtype expressed the high-

est levels of mesenchymal markers, including VIM, ZEB2,

and AXL, while exhibiting the lowest level of epithelial marker

EPCAM (Figure S6E).

The amplification ofMYC showed no statistically significant dif-

ference among these subtypes (Figure S6F), whereasMYCmRNA

expression displayed significant upregulation in the nmf4 subtype

(nmf4 vs. [nmf1 or nmf2 or nmf3], fold change [FC] > 7.5; Fig-

ure 6H). Further, IHC staining for MYC protein in SCLC tumors

and NATs confirmed these differences (Figures 6I, 6J, and S6G).

Phosphoproteomics data showed that MYC S62, S347, S348,

and S161 phosphosites were also upregulated in the nmf4 sub-

type (Figures 6K, S6F, and S6H). Among them, MYC S62 is the

most studied phosphosites, which can promote stabilization of

MYC and enhance MYC activity.45–48 MYC S347 and S348 have

been identified to promote cell growth.49 These results suggested

an active oncogenic role of MYC in the nmf4 subtype. When

compared with NAT samples, MYC expression was only upregu-

lated in the nmf4 subtype tumors at RNA, protein, and phosphor-

ylation levels, while downregulated in other subtypes (Figures 6L,

6M, S6G, and S6I). Thus, our findings implicate that MYC expres-

sion rather than MYC gene amplification could better indicate

MYC status andmay beamore valuablemarker to define a subset

of SCLC with low NE properties and high-POU2F3 expression.

Additionally, xCell-based immune cell infiltration and proteoge-

nomic-derived immune modulator signatures revealed a differen-

tial pattern of immune features across the multi-omics subtypes

(Figure S6J). The nmf3 and nmf4 subtypes had higher immune

scores (Figure S6K). Immune-hot tumors in the nmf3 subtype

included most of the transcriptional inflamed subtype, and other

immune-hot tumors were mainly allocated to the nmf4 subtype.

This is consistent with our previous study50 and further supports

that the immune infiltration subtype seems to correspond to a

combination of POU2F3-driven and inflamed subtypes. Together,

these dataprovide a comprehensive characterization ofmolecular

heterogeneity among SCLC tumors and suggest the necessity of

subtype-specific treatment strategies.

Subtype-specific therapeutic strategies in SCLC
Based on the molecular features of multi-omics subtypes, we

explored subtype-specific therapeutic vulnerabilities of SCLC.
Figure 6. Multi-omics classification of TU-SCLC cohort and the corres

(A) Integrative multi-omics classification of SCLC tumors into four NMF-derived s

subtype. Representative pathways are also annotated.

(B) Comparison of TMB, chromosome instability (CIN), stemness scores, and mR

(C) The percentages of specific genes with CNA for each subtype (p < 0.05, Fish

(D) Heatmap showing relative mRNA expression of ANPY, protein expression o

proliferation index marker Ki-67/MKI67 across multi-omics subtypes. A, ASCL1;

(E) Comparison of ANPY expression across multi-omics subtypes (Wilcoxon ran

(F and G) Comparison of NE scores (F) and EMT scores (G) inferred from proteo

(H and I) Comparison of MYC mRNA abundance (H) and protein abundance by I

(J) Scatterplot showing Spearman’s correlation of MYC mRNA with protein abun

(K) Comparison of MYC S62 abundance across subtypes (Wilcoxon ranked-sum

(L and M) Comparison of MYC mRNA (L) and MYC S62 (M) phosphosite abundan

signed-rank test).

See also Figure S6 and Table S6.
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The nmf1 subtype was associated with high proliferation, E2F

activity, as well as replication stress (Figure S7A). A recent study

suggests that concurrent inhibition of ATR and TOP1 results in

durable SCLC regression, especially in patients with high repli-

cation stress and NE differentiation.51 Using the differentially ex-

pressed genes between responding and non-responding tumors

from this study,51 we detected a strong response score toward

ATR and TOP1 inhibition in the nmf1 subtype (Figure S7B).

Consistently, the response score was predicted to be highest

in the nmf1 subtype from another two SCLC datasets9,52 (Fig-

ure S7B; STAR Methods). Moreover, we found that the nmf2

subtype showed the highest protein level of the inhibitory

NOTCH ligand delta-like protein 3 (DLL3) and the lowest

mRNA level of the NOTCH transcriptional target REST (Fig-

ure S7C). Similarly, high DLL3 expression was observed in the

nmf2 subtype from the George et al. dataset9 (Figure S7D). Since

DLL3 has been proposed as a promising target in SCLC and its

expression significantly correlates with high therapeutic efficacy

of DLL3-targeted drugs,53–55 it remains very likely that the

nmf2 subtype might benefit from therapeutics targeting DLL3.

Remarkably, our phosphoproteomic data showed that the activ-

ity of RTK signaling was notably upregulated in the nmf3 subtype

(Figure 6A). Anlotinib, a multi-target tyrosine kinase inhibitor

known for its anti-angiogenesis and anti-tumor activity, has

been proven to improve progression-free survival (PFS) and

OS in SCLC patients.56 We proposed that targeting RTKs may

be a potential strategy for the nmf3 subtype. The nmf4 subtype

showed high MYC expression and the enrichment of MYC-

related pathways, further implicating a potential opportunity for

targeting AURKA/B.57,58

To validate these proposed subtype-specific therapeutic stra-

tegies, we analyzed a total of 16 SCLC patient-derived xenograft

(PDX) and 6 human SCLC cell line-derived xenograft (CDX)

models through RNA-seq, proteomics, and phosphoproteomics

characterization among which 10 tumors were concordant with

nmf1, 3 with nmf2, 5 with nmf3, and 4 with nmf4 (Figure S7E;

Table S7; STAR Methods). Since we have no DLL3-targeting re-

agents available, we focused on the validation of the nmf1, nmf3,

and nmf4 subtypes. We found that the nmf1 tumor models held

great response to ATR and TOP1 inhibition (Figure S7F). In vivo

results further showed that the nmf1 subtype (H69 CDX model)

was susceptible to etoposide + cisplatin (E/P) treatment (Fig-

ure S7G). This is consistent with our previous findings in other
ponding biological features

ubtypes. Heatmap showing the signature proteins and phosphosites for each

NA-protein correlation across multi-omics subtypes (Kruskal-Wallis test).

er’s exact test).

f neuroendocrine markers, thyroid transcription factor 1 (TTF-1/NKX2-1), and

N, NEUROD1; P, POU2F3; Y, YAP1.

ked-sum test).

genomic data across subtypes (Wilcoxon ranked-sum test).

HC assays (I) across subtypes (Wilcoxon ranked-sum test).

dance (H scores).

test).

ce between tumors and paired NATs in each subtype, respectively (Wilcoxon
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Figure 7. Subtype-specific therapeutic strategies in SCLC

(A) Tumor growth in SC022 tumor-bearing mice treated with anlotinib or vehicle. Data are represented as mean ± SEM (n = 5 mice per group, Student’s t test).

(B) Statistical analyses of tumor weights (left) andmouseweights (right) fromSC022 PDXmodels treatedwith anlotinib or vehicle. Data are represented asmean ±

SEM (Student’s t test).

(C) The tumors from SC022 PDX models treated with anlotinib or vehicle.

(D–F) Relative viability of H146, H82, and H446 cells after 72 h of treatment with increasing concentrations of AURK inhibitor alisertib (D), barasertib (E), or

AMG-900 (F). Data are represented as mean ± SEM (n = 3 replicates, Student’s t test, ***p < 0.001).

(G) Tumor growth in SC222 tumor-bearingmice treatedwith E/P, alisertib, or vehicle. Data are represented asmean ±SEM (n = 5mice per group, Student’s t test).

(H) Statistical analyses of tumor weights (left) and mouse weights (right) from SC222 PDX models treated with E/P, alisertib, or vehicle. Data are represented as

mean ± SEM (Student’s t test).

(I) The tumors from SC222 PDX models treated with E/P, alisertib, or vehicle.

(J) Tumor growth inH146 tumor-bearingmice treated with anlotinib, alisertib, or vehicle. Data are represented asmean± SEM (n = 5mice per group, Student’s t test).

(K) Statistical analyses of tumor weights (left) andmouseweights (right) fromH146CDXmodels treatedwith anlotinib, alisertib, or vehicle. Data are represented as

mean ± SEM (Student’s t test).

(L) The tumors from H146 CDX models treated with anlotinib, alisertib, or vehicle.

See also Figure S7 and Table S7.

ll
Resource
nmf1 tumors including SC234, SC007, SC185 PDX models, and

H146 CDX model.59

As for the nmf3 subtype, we examined the therapeutic effi-

cacy of the RTK inhibitor anlotinib in multiple nmf3 PDX/CDX
models including SC022, SC224, and DMS114. Strong inhibi-

tion of tumor growth was observed in all three nmf3 tumor

models (Figures 7A–7C and S7H–S7K), whereas no obvious

inhibition was observed in the nmf1 tumor models (H146 and
Cell 187, 184–203, January 4, 2024 197
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SC234) (Figures 7J–7L and S7O–S7Q). As for the nmf4 sub-

type, we tested the effect of AURK inhibitors (alisertib, bara-

sertib, and AMG-900) on nmf4 SCLC cell lines (H82 and

H446) as well as PDX/CDX models (SC222 and H446). We

found that the nmf4 cell lines were more responsive to aliser-

tib, barasertib, and AMG-900 treatment when compared with

the nmf1 subtype (H146) (Figures 7D–7F). Moreover, alisertib

treatment significantly inhibited tumor growth in the nmf4

PDX/CDX models (Figures 7G–7I and S7L–S7N) while barely

eliciting any inhibition in the nmf1 tumor models (H146 and

SC234) (Figures 7J–7L and S7O–S7Q). These data highlight

the importance of subtype-specific targeting in SCLC and

support the utility of multi-omics subtypes in guiding treatment

selection.

DISCUSSION

A significant challenge in the SCLC field is the scarcity of tumor

specimens available for research studies.2 Most of our knowl-

edge about SCLC has been obtained from studies using

model-centric approaches, leading to a gap between basic

research and patient outcomes.60 Therefore, there is a great

need for the collection of SCLC patient samples to understand

the molecular basis of this disease and accelerate both clinical

and basic research. Genomic analyses of SCLC have broadened

our understanding of the molecular events of this aggressive

malignancy.9,11,16,17,61 In this study, we reported a comprehen-

sive proteogenomic characterization of 112 treatment-naive

and resectable SCLC tumors and paired NATs. We found

that TP53 and RB1 inactivation were the primary genetic alter-

ations, with only 9 patients (8%) showing no DNA-level alter-

ations. Interestingly, the somatic mutation rate of TP53 was

lower when compared with cohorts predominantly fromWestern

populations,9,11 but comparable with Asian cohorts from Japa-

nese.10,62,63 A real-world study also indicates that patients of Af-

rican genetic ancestry exhibited fewer TP53 or RB1 alterations

compared with European patients.11 These findings suggest

that differences such as ethnicity or other clinical parameters

could influence the mutational profile of SCLC. Interestingly,

recent discoveries demonstrated that TP53/RB1-WT tumors

represented a distinct genetic subtype of SCLC associated

with human papilloma virus (HPV) infection.11 Although no HPV

infection was detected in TU-SCLC cohort, likely due to the

limited patient number, we believed that other mechanisms

beyond genomic alteration may inactivate TP53 and RB1.

Paired tumor-NAT analyses enabled us to identify SCLC-

associated proteins, activated kinases, and CT antigens. We

identified and validated HMGB3 and CASP10 as putative prog-

nostic biomarkers. CASP10 is a member of the caspase family

and could suppress tumorigenesis by affecting apoptotic, meta-

bolic, or epigenetic reprogramming pathways.64,65 We found

lower levels of CASP10 expression in SCLC tumors and its asso-

ciation with worse patient outcome. Further studies are war-

ranted to investigate its contribution to SCLC tumorigenesis.

HMGB3 has been reported as a highly expressed protein in

various cancer types,25,26 which may drive cancer metastasis

and growth. Previous studies found that downregulation of

HMGB3 expression can inhibit migration and invasion in various
198 Cell 187, 184–203, January 4, 2024
cancer cells,66–68 but the underlying mechanisms have not been

revealed. We found that HMGB3 could promote SCLC cell

migration via modulating the transcription of cell junction-related

genes. Interestingly, our data also indicated that HMGB3 is

associated with the PI3K-Akt and MAPK signaling pathways

through a transcription-dependent manner, which may provide

more clues to understanding the role of HMGB3 in promoting

SCLC tumorigenesis. The connection of HMGB3 to the activa-

tion of PI3K-Akt andMAPK signaling pathways has also been re-

ported in colorectal carcinoma69 and glioblastoma,70 respec-

tively. Therefore, these results indicate that HMGB3 may play

an important and complex role in promoting SCLC, in addition

to serving as a robust prognostic biomarker for SCLC patients.

Immunotherapy has been regarded as a promising treatment

for SCLC, but its benefits are still limited. Recent clinical trials

suggested that predictive biomarkers and combination thera-

pies are required to achieve better clinical outcomes.71,72 Pro-

teogenomic analysis allowed us to characterize the immune

landscape of SCLC and revealed three immune clusters. We

linked ZFHX3 mutation to immune-hot behavior and clinically

demonstrated that ZFHX3 mutation could be a potential predic-

tive biomarker for SCLC patients receiving immunotherapy.

Interestingly, an exploratory analysis focused on NSCLC immu-

notherapy cohort also indicated ZFHX3 mutation was an inde-

pendent predictive biomarker.73 Moreover, we found that

elevated DDR activity may promote immune suppression via

attenuating the activation of the cGAS-STING pathway and

extended recent reports demonstrating strong synergy between

DDR inhibitors and immune checkpoint blockade (ICB) by

STING-mediated T cell activation in themurine SCLCmodel.74,75

Unsupervised clustering divided SCLC tumors into four

subtypes with biological differences and various therapeutic vul-

nerabilities. The nmf1 subtype was associated with high prolifer-

ation rate, replication stress, and NE differentiation. This sug-

gests a potential response to drugs that exacerbate genome

instability, and this hypothesis was validated by E/P-based

chemotherapy treatment. The nmf2 subtype showed a high

abundance of DLL3 expression, suggesting potential response

to anti-DLL3 therapies, such as the T cell engager (TCE) mole-

cules tarlatamab.53,76 The nmf3 subtype was characterized by

high EMT status and elevated RTK signaling and thus may

benefit from RTK inhibitor treatment. As expected, the experi-

mental results showed that anlotinib was more effective in the

nmf3 subtype CDX/PDX models than those subtyped to nmf1.

By contrast, the nmf4 subtype displayed a non-NE subtype

with high expression of MYC and POU2F3, which may be sensi-

tive to AURK inhibitors.58 Indeed, we found the nmf4 subtype tu-

mors were more responsive to alisertib than those subtyped to

the nmf1 subtype both in in vitro cell cultures and in vivo PDX/

CDX models. Therefore, these results indicate that the multi-

omics subtyping and their respective characteristics may be

valuable in guiding treatment selection of SCLC.

Altogether, this work extends the understanding of SCLC can-

cer biology that could not be captured by genomic analysis and

generates subtypes that may guide precision therapeutics. We

hope that these findings will contribute to more effective SCLC

clinical treatment in addition to providing a valuable resource

for basic and clinical researchers.
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Limitations of the study
The objectives of this study were to comprehensively characterize

SCLC using multi-omics analysis and provide proteogenomic re-

sources.For thispurpose,collectedsampleswere treatment-naive

and surgically resected. Consequently, there are inherent limita-

tions of this study. (1) The present cohort comprises resectable

samples, which limits the exploration to progressive and metasta-

tic tumors, even thoughmost patients were diagnosed with meta-

static disease.77 Moreover, analysis of treatment-naive samples

lacks treatment data from therapeutic drugs and limits the investi-

gation to therapy-related proteogenomic features. Focused ana-

lyses of expanded cohorts in the future will contribute to providing

critical insights intometastaticbiologyand treatmentperturbations

that may shed light on mechanisms of response and resistance to

therapy. (2) Proteogenomic analysis of this study is deployedusing

bulk tumors andNAT tissues, which improved the depth and inter-

nal concordance of molecular analysis but sacrificed intra-tumor

heterogeneity information in cellularity and tumor microenviron-

ment. Emerging methods geared to more spatially resolved pro-

teogenomics or using single-cell genomics and proteomics will

be useful adjuncts.78–80 (3) Although some of the key findings

from proteogenomic analysis were validated using cell lines and

CDX/PDX models, many molecular alterations are hypothesis-

generating. Therefore, a wider community effort will be required

to validate biological conclusions and treatment predictions.
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Anlotinib Selleck Cat# S8726

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Alisertib Selleck Cat# S1133

Barasertib Selleck Cat# S1147

AMG-900 Selleck Cat# S2719

Critical commercial assays

QIAamp Fast DNA tissue kit QIAGEN Cat# 51404

SureSelect Human All ExonV6 Kit Agilent Technologies Cat# 5190-8865

RNAlater Reagent Invitrogen Cat# AM7020

TRIzol Reagent Invitrogen Cat# 15596026

NEBNext� UltraTM RNA Library Prep Kit NEB Cat# E7530L

BCA Protein Assay Kit Beyotime Biotechnology Cat# P0012S

TMT 10-plex Isobaric Label Reagent Thermo Fisher Scientific Cat# 90111

TMT 11-131C Label Reagent Thermo Fisher Scientific Cat# A34807

High-Select Fe-NTA kit Thermo Fisher Scientific Cat# A32992

truChIP� Chromatin Shearing Kit Covaris Cat# 520127

EZ-ChIP� Chromatin Immunoprecipitation Kit Millipore Cat# 17-371

NEBNext� Ultra� DNA Library Prep Kit NEB Cat# E7645

Deposited data

Proteomics data of TU-SCLC cohort This paper OMIX database: OMIX002489;

https://ngdc.cncb.ac.cn/omix

WES and RNA-seq data of TU-SCLC cohort This paper GSA database: HRA003419;

http://bigd.big.ac.cn/gsa-human

GENCODE (version 22) N/A https://www.gencodegenes.org

GRCh38/hg38 NCBI https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001405.26/

SwissProt human protein database

(version 2018.08, 20,431 entries)

Uniprot https://www.uniprot.org/

PhosphoSitePlus Hornbeck et al.20 https://www.phosphosite.org

CT Antigen database Almeida et al.81 http://www.cta.lncc.br

Human Protein Atlas Uhlén et al.82 https://www.proteinatlas.org

MSigDB v7.1 gene sets Liberzon et al.83 https://www.gsea-msigdb.org

PTMsigDB version 1.9.0 Krug et al.21 https://github.com/broadinstitute/

ssGSEA2.0/tree/master/db/ptmsigdb

Mutational Signatures (version 3.2) COSMIC https://cancer.sanger.ac.uk/signatures/

COSMIC onco-driver and suppressor gene data COSMIC https://cancer.sanger.ac.uk/census

HGNC database HGNC https://www.genenames.org

Experimental models: Cell lines

Human: 293T Prof. Daming Gao (Shanghai

Institute of Biochemistry and

Cell Biology)

N/A

Human: H146, male origin ATCC Cat# HTB-173

Human: DMS114, male origin ATCC Cat# CRL-2066

Human: H345, male origin ATCC Cat# HTB-180

Human: H69, male origin ATCC Cat# HTB-119

Human: H82, male origin Dr. Zhe Liu (Tianjin

Medical University)

N/A

Human: H446, male origin Dr. Lei Huang (Shanghai Jiao

Tong University)

N/A

Human: H526, male origin Dr. Lei Huang (Shanghai Jiao

Tong University)

N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

BALB/c nude mouse, male BK Company, Shanghai N/A

C.B-17 SCID mouse, male SLAC Company, Shanghai N/A

Oligonucleotides

siRNA targeting sequence:

siSTMN1-1 sense: 5’- UGGAGGAAAUUCAGAAGAA-3’

siSTMN1-2 sense: 5’- AGGUGAAAGAACUGGAGAA-3’

This paper N/A

siRNA targeting sequence:

siTMA7-1 sense: 5’-GAAGAAACUCGAGGAGCUA-3’

siTMA7-2 sense: 5’-GAAUUAAGAAAUCUGGCAA-3’

This paper N/A

siRNA targeting sequence:

siHMGB3-1 sense: 5’-AGAAGAAGAAGGAUCCUAA-3’

siHMGB3-2 sense: 5’-GACUAUAAGUCGAAAGGAA-3’

This paper N/A

siRNA targeting sequence:

siITGB4-1 sense: 5’-GGAAAGAGCUGCAGGUGAA-3’

siITGB4-2 sense: 5’-CCACAGAGCUGGUGCCCUA-3’

This paper N/A

siRNA targeting sequence:

siCLDN10-1 sense: 5’-CGAUAAAGCCAAAGCUAAA-3’

siCLDN10-2 sense: 5’-GUAUCAUGGUGGAGAAGAU-3’

This paper N/A

siRNA targeting sequence:

siVTN-1 sense: 5-GCUAUGAACUGGACGAAAA-3’

siVTN-2 sense: 5-GCUUCAACGUGGACAAGAA-3’

This paper N/A

siRNA targeting sequence:

siPKP2-1 sense: 5-CCCAGAAGUCCGUGGAAGA-3’

siPKP2-2 sense: 5-CCAGAGACUUGGAGACUAA-3’

This paper N/A

siRNA targeting sequence:

siLAMC2-1 sense: 5’-CGAAAUGGGUCUCCUGCAA-3’

siLAMC2-2 sense: 5’-CGGAGGAGGUGGUGUGCAA-3’

This paper N/A

Primers for GAPDH, HMGB3, ITGB4, CLDN10, VTN,

PKP2, LAMC2; see method details section

‘‘Real-time quantitative PCR’’

This paper N/A

Recombinant DNA

pLEX-MCS-CMV-puro Thermo Scientific Open

Biosystems

Cat# OHS4735

Software and algorithms

MaxQuant (version 1.6.5.0) Tyanova et al.84 http://www.maxquant.org

GATK (version 4.0.6.0) Broad Institute https://software.broadinstitute.org/gatk/

BWA (version 0.7.15) Li and Durbin85 http://bio-bwa.sourceforge.net/

Picard (version 2.9.0) GitHub http://broadinstitute.github.io/picard/

MutSigCV (version 1.4) Lawrence et al.86 https://www.genepattern.org/modules/

docs/MutSigCV

SignatureAnalyzer Kim et al.87 https://github.com/getzlab/SignatureAnalyzer

OptiType (version 1.2.1) Szolek et al.88 https://github.com/FRED-2/OptiType

NetMHCpan (version 3.0) Nielsen and Andreatta89 http://www.cbs.dtu.dk/services/

NetMHCpan-3.0/

CopywriteR (version 2.6.1.2) Kuilman et al.90 https://github.com/PeeperLab/CopywriteR

GISTIC2.0 (version 2.0.23) Mermel et al.91 https://github.com/broadinstitute/gistic2

STAR (version 2.7.6a) Dobin et al.92 https://github.com/alexdobin/STAR

Salmon (version 1.3.0) Patro et al.93 https://combine-lab.github.io/salmon/

OmicsEV Bing Zhang Lab https://github.com/bzhanglab/OmicsEV

MODMatcher (version 0.1.0) Yoo et al.94 https://github.com/integrative

networkbiology/Modmatcher

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

diptest R Package (version 0.75-7) N/A https://cran.r-project.org/web/packages/

diptest/index.html

multiOmicsViz R package (version 1.20.0) N/A http://www.bioconductor.org/packages/

release/bioc/html/multiOmicsViz.html

ESTIMATE (version 1.0.13) Yoshihara et al.32 https://bioinformatics.mdanderson.org/

public-software/estimate/

xCell Aran et al.33 https://xcell.ucsf.edu/

NMF R-package (version 0.23.0) Gaujoux and Seoighe95 https://cran.r-project.org/web/

packages/NMF/index.html

PTM-SEA Krug et al.21 https://github.com/broadinstitute/ssGSEA2.0

WebGestalt Liao et al.96 http://www.webgestalt.org/

GSVA R package (version 1.42.0) Hänzelmann et al.97 https://bioconductor.org/packages/release/

bioc/html/GSVA.html

GSEA software (version 4.1.0) Subramanian et al.98 https://www.gsea-msigdb.org/gsea/index.jsp

DreamAI Pei Wang Lab https://github.com/WangLab-MSSM/DreamAI

factoextra R package (version 1.0.7) N/A https://rpkgs.datanovia.com/factoextra/

index.html

Bowtie2 (version 2.4.2) Langmead and Salzberg99 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

MACS2 (version 2.2.7) Zhang et al.100 https://pypi.org/project/MACS2/

Homer (version 4.11.1) N/A http://homer.ucsd.edu/homer/ngs/

annotation.html

clusterProfiler R package (version 4.2.0) Yu et al.101 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

lmerTest R package (version 3.1-3) Kuznetsova et al.102 https://cran.r-project.org/web/packages/

lmerTest/index.html

h2o R package (version 3.36.0.3) Kochura et al.103 https://www.h2o.ai
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and regents should be directed to and will be fulfilled by the lead contact, Peng Zhang

(zhangpeng1121@tongji.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
TheWES and RNA-seq raw data have been deposited in the Genome Sequence Archive (GSA) database in National Genomics Data

Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA database:

HRA003419, http://bigd.big.ac.cn/gsa-human). The proteomic data have been deposited in theOMIX database, China National Cen-

ter for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (OMIX database: OMIX002489, https://ngdc.

cncb.ac.cn/omix).

Sample annotation, processed, and normalized data files were provided in Table S1. Software and code used in this study are

referenced in their corresponding STAR Methods sections and also the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Specimens
All SCLC tumor and normal adjacent tissue (NAT) samples for this studywere prospectively collected fromShanghai Pulmonary Hos-

pital (Tongji University, Shanghai, China) from April 2012 to June 2019. This study was approved by the Institutional Review Board of

Shanghai Pulmonary Hospital and written informed consents of all participating patients were obtained. The clinicopathological
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parameters were collected and summarized in Table S1, including gender, age, smoking status, tumor site, histologic type, tumor

size, date of surgical resection, TNM staging (AJCC cancer staging system 8th edition) and VALSG (the Veterans Administration

Lung Study Group) staging and so on. This cohort included 98 males and 14 females with the median age at diagnosis of 62 (range

38-81). In total, 35, 30 and 47 patients were classified as TNM stages I, II and III-IV, respectively. Most patients had been diagnosed

with limited-stage, except one with extensive-stage. Histologically, 91% (n = 102) of the tumors were pure SCLC, and 9% (n = 10)

were combined SCLC, which had an additional component of non-small cell lung cancer. Overall survival (OS) was defined as the

interval between surgery and death.

Cell Lines
Human SCLC cells (H345, H69, H146 and DMS114) were purchased from American Type Culture Collection (ATCC). H82 cells were

generously provided by Dr. Zhe Liu at Tianjin Medical University; H446 and H526 cells were generously provided by Dr. Lei Huang at

Shanghai Jiao Tong University. Human embryonic kidney cells (HEK293T) were kept by Prof. Daming Gao’s lab. HEK293T cells were

cultured in DMEM with 10% fetal bovine serum (FBS), penicillin and streptomycin. All the human SCLC cells were cultured in RPMI

1640 medium with 10% FBS, penicillin and streptomycin.

Animals
Six-week-old female BALB/c nude mice were purchased from BK Company (Shanghai, China) and used for establishment of human

SCLC cell line xenografts. Six-week-old female C.B-17 SCIDmice were purchased from SLACCompany (Shanghai, China) and used

for establishment of SCLC PDX models. All animal experiments were conducted following a protocol approved by the Institutional

Animal Care and Use Committee of the Shanghai Institute of Biological Sciences, Chinese Academy of Sciences.

Mice were maintained in specific pathogen-free facilities and housed in single-sex cages at 23 ± 3 �C, 40-70% humidity under a

12-h light/12-h dark photoperiod with the lights on at 7:00 a.m. The length and width of the tumors (in millimeters) were measured

every other day with calipers. Tumor volume was calculated using the formula (A3B2)/2, where A and B were the long and short di-

mensions, respectively. Mice were blindly randomized into different groups for treatment studies.

METHOD DETAILS

Specimen Acquisition and Preparation
Following Clinical Proteomic Tumor Analysis Consortium (CPTAC) guideline, all the tissues were treatment-naı̈ve and surgically re-

sected. No prior anticancer treatments, including chemotherapy, radiotherapy or immunotherapy therapy were exposed previously.

Paired histologically-NATs were collected from the same patient at tumor resection. Tissues were obtained and stored in liquid ni-

trogen less than 30 min after resection. For accurate tumor cellularity analysis, hematoxylin and eosin (H&E) staining of the middle

section of each tissue was done. Histologic sections from each case were reviewed by two board-certified pathologists to confirm

the assigned pathology.

The proteogenomic workflow of our SCLC samples was shown in Figure 1A. SCLC tumor specimens and NATs were cryo-pulver-

ized using the CryoPrepTM CP02 (Covaris), and then divided into three parts. The first part was snap-frozen in liquid nitrogen and

stored in -80�C for DNA extraction and whole exome sequencing (WES); the second part was stored in 1 mL RNAlater Reagent

(Invitrogen) at -80�C for RNA extraction and RNA sequencing (RNA-seq); the remaining samples were treated with SDS lysis buffer

(4% SDS, 0.1 M Tris-HCl, pH 7.6) and kept in -80�C for the following proteomic and phosphoproteomic analyses. According to Clin-

ical Proteomic Tumor Analysis Consortium (CPTAC) clinical sample collection procedures as reported previously,104,105 112 high-

quality tumors and paired NATs were chosen for WES, proteomic and phosphoproteomic analyses; among which 107 paired sam-

ples with qualified RNA were used for RNA-seq.

Genomics and Transcriptomics Profiling Experiments
DNA extraction and whole exome sequencing (WES)

Genomic DNA was extracted from tumors and NATs using QIAamp Fast DNA tissue kit (QIAGEN) according to the manufacturer’s

protocol. Total DNA was quantified by the Qubit 2.0 Flurometer (Life Technologies) and NanoDrop 2000 (Thermo Fisher Scientific)

and the integrity was assessed by TapeStation (Agilent Technologies). For Illumina sequencing library construction, the genomic

DNA was fragmented to an average size of 180-280 bp using a Covaris focused-ultrasonicator. Then, WES libraries were prepared

and captured using the Agilent SureSelect Human All Exon V6 kit (Agilent Technologies) following the manufacturer’s instructions.

The DNA library with 150 bp paired-end reads was sequenced on the Illumina Novaseq 6000 platform.

RNA extraction and RNA sequencing

Total RNA was extracted and purified from fresh frozen tissues using the TRIzol reagent (Invitrogen). All RNA analytes were assayed

for RNA concentration and purity using Qubit� RNA Assay Kit in Qubit� 2.0 Flurometer (Life Technologies) and NanoPhotometer�
spectrophotometer (IMPLEN). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agi-

lent Technologies). Samples with RNA integrity number (RIN) > 6.0 were considered high quality and used to prepare the transcrip-

tome library. Total RNA-seq library construction was performed from the RNA samples using NEBNext� UltraTM RNA Library Prep

Kit for Illumina� (NEB) following manufacturer’s recommendations and index codes were added to attribute sequences to each
e5 Cell 187, 184–203.e1–e14, January 4, 2024
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sample. Quality control was performed at every step, and the libraries were quantified using the Agilent Bioanalyzer 2100 system

(Agilent Technologies). Then, paired-end libraries were sequenced on the Illumina Novaseq 6000 platform and 150 bp paired-end

reads were generated. Totally, 107 paired tumor and NAT samples passed the RNA quality control and were used for RNA-seq.

Proteomics and Phosphoproteomics Profiling Experiments
Protein extraction and tryptic digestion

Approximately 25-100 mg of each cryo-pulverized SCLC tumor or NAT sample was resuspended in 500 mL lysis buffer (4% SDS,

0.1 M Tris-HCl, pH 7.6) and sonicated at 20% amplitude for 2 min (5 s on, 5 s off) using Ultrasonic Homogenizer (JY92-IIDN,

NingBo Scientz Biotechnology). The proteins were then denatured and reduced at 95�C for 5 min. Lysates were centrifuged at

12,000 g for 10 min to remove the insoluble debris and protein concentrations of the clarified lysates were measured by BCA assay

(Beyotime Biotechnology).

Protein lysates were reduced with 0.1 M dithiothreitol (Sigma) for 30 min at 56�C and then an equal amount of proteins for each

sample were digested by filter-aided sample preparation (FASP) procedure as previously reported.104–106 Briefly, proteins were

mixed with 200 mL UA buffer (8 M urea in 0.1 M Tris-HCl, pH 8.5) in 10 kDa centrifugal filter tubes (Pall Corporation) and centrifuged

at 12,000 g at 22�C. All the following centrifugation steps were performed applying the same conditions, washed twice with 200 mL

UA buffer, alkylated with 50mM iodoacetamide (Sigma) in 200 mL UA buffer for 30min in the dark at room temperature, washed thrice

with 100 mL UA buffer again and finally washed thrice with 100 mL 50 mM triethyl ammonium bicarbonate (TEAB, Sigma). Subse-

quently, proteins were subjected to proteolytic digestion with sequencing grade modified trypsin (Promega) at 1:50 enzyme-to-sub-

strate ratio in 50 mM TEAB for 18 hours at 37�C. The digests were collected by centrifugation, and the filter device was rinsed with

50 mL 50 mM TEAB and centrifuged again. The concentration of tryptic peptides was determined by BCA assay and 400 mg peptides

for each sample were dried using Speed-Vac apparatus (Thermo Fisher Scientific).

Preparation of reference tissue samples

The proteomic and phosphoproteomic analyses of SCLC samples were structured as TMT 11-plex experiments. To facilitate quan-

titative comparison between all samples in each TMT batch experiment, an ‘internal reference’ mixed sample was included in each

TMT set. Therefore, 40 pairs of tumors and NATs were randomly selected and mixed in equal protein amount, yielding an internal

reference represented in this study. The resulting pooled reference material was divided into 1.2 mg aliquots and was also digested

by FASP procedure as described above.

TMT 11-plex labeling of peptides

112 tumor samples with paired NATs were distributed among 23 sets of TMT 11-plex experiments, with 10 individual samples occu-

pying the first 10 channels of each set and the 11th channel being reserved for the internal reference sample. For each TMT exper-

iment, five tumor samples were labeled with 126, 127C, 128C, 129C and 130C; paired NAT samples were labeled with 127N, 128N,

129N, 130N and 131N; and the mixed samples were labeled with channel 131C as internal reference.

For each TMT labeling experiment, dried peptides (400 mg) from each sample were dissolved in 200 mL 100mM TEAB and two sets

of TMT reagents (0.8 mg) dissolved in 82 mL (41 mL3 2) anhydrous acetonitrile were added. After 1-hour incubation at room temper-

ature, 16 mL 5%hydroxylaminewas added to quench the labeling reaction for 15min at room temperature. The labeled peptideswere

pooled, dried down via Speed-Vac, and subsequently desalted on a reversed phase tC18 SepPak column (Waters). The same lot of

TMT reagents were used for all samples (TC261829 for TMT 10-plex and TF266762 for TMT 11-131C).

Peptides fractionation by high-pH reversed-phase liquid chromatography

To deduce sample complexity and increase the depth of protein identification, high-pH reverse phase liquid chromatography (RPLC)

was used for peptides fractionation. For each TMT set, about 4.4 mg TMT 11-plex labeled peptides were fractionated using a

4.6 mm3 250 mmWaters XBridge BEH300 C18 column with 3.5 mm size beads (Waters). Peptides were separated using an Agilent

1100 HPLC instrument via high-pH reversed-phase liquid chromatography with solvent A (10 mM ammonium formate, pH 10) and a

non-liner increasing concentration of solvent B (90% ACN, 10 mM ammonium formate, pH 10) at a flow rate of 0.7 mL/min. The

110-min separation gradient was set as follows: 1%-5% B in 2 min; 5%-25% B in 35 min; 25%-40% B in 43 min; 40%-55% B in

6 min; 55%-95% B in 3 min; 95% B for 4 min; 95%-1% B in 1 min; 1% B for 16 min. Peptides were separated and collected every

minute for a total of 96 fractions from 3min to 99min, andwere subsequently combined into 24 fractions by a stepwise concatenation

strategy. 5% of each of the 24 fractions was allocated and dried down via Speed-Vac for global proteome analysis. The remaining

95% sample was then utilized for phosphopeptides enrichment as described below.

Phosphopeptides enrichment by Fe-IMAC

High-Select Fe-NTA kit (Thermo Fisher Scientific) was used for phosphopeptides enrichment according to the manufacturer’s in-

structions. In brief, fractionated peptides were reconstituted in 200 mL 80% ACN/0.1% trifluoroacetic acid (TFA) and incubated

with 50 mL Fe3+-NTA agarose beads for 20 min at room temperature. Then, the mixture was transferred into the filter tip (Axygen,

TF-200-L-R-S) and clarified peptide flow-throughs with unbound peptides were collected by centrifugation. After successive washes

with 200 mL 80%ACN/0.1% TFA three times and 200 mL H2O three times, the bound phosphopeptides were eluted twice with 200 mL

50%ACN/5%NH3$H2O and dried down via Speed-Vac. All centrifugation steps above were conducted at 50 g at room temperature.

Benchmark sample preparation

Longitudinal quality control of mass spectrometry performance was tested by periodic analysis of full process replicates of a bench-

mark sample. The benchmark sample was prepared from five pairs of hepatocellular carcinoma tissues and their adjacent non-tumor
Cell 187, 184–203.e1–e14, January 4, 2024 e6
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liver tissues as previously reported.105 After protein extraction, tryptic digestion, TMT 10-plex labeling (tumor tissues labeled with

126, 127C, 128C, 129C and 130C; adjacent non-tumor liver tissues labeled with 127N, 128N, 129N, 130N and 131) and peptides

fractionation as described above, 1 mg and diluted samples of 100 ng from each fraction were analyzed before every three sets of

SCLC proteomic and phosphoproteomic samples on a Q Exactive HF mass spectrometer, respectively.

LC-MS/MS analysis

For proteomic analysis, the fractionated peptides were re-suspended in 2%ACN/0.1% formic acid (FA) and about 1 mg of each frac-

tion was separated using an in-house packed 20 cm3 75 mm internal diameter C18 column (1.9 mmReproSil-Pur C18-AQ beads, Dr.

Maisch GmbH, Germany) on a nanoflow Easy nLC 1200 UHPLC system (Thermo Fisher Scientific). The column was heated to 50�C
using a home-made column heater. The flow rate was set at 300 nL/min. Buffer A and B were 0.1% FA in H2O and 0.1% FA in 80%

acetonitrile, respectively. The 120-min separation gradient was set as follows: 2%-5%B in 1 min; 5%-35%B in 93 min; 35%-50% B

in 15 min; 50%-100% B in 3 min; 100% B in 8 min. Samples were analyzed with a Q Exactive HF mass spectrometer (Thermo Fisher

Scientific) equipped with a nanoflow ionization source. Data-dependent acquisition was performed using Xcalibur software (version

4.0.27.19) in positive ion mode at a spray voltage of 2,300 V. TheMS1 spectra wasmeasured with a resolution of 120,000 @m/z 200,

an AGC target of 3e6, a maximum injection time (IT) of 50 ms and amass range of 350 to 1,700 m/z. The data-dependent mode cycle

was set to trigger MS2 scan on up to the top 20 most abundant precursors per cycle at an MS2 resolution of 60,000 @ m/z 200, an

AGC target of 1e5, a maximum injection time of 120 ms, an isolation window of 1.0 m/z, an HCD (high collision dissociation) collision

energy of 32, and a fixed first mass of 105.0 m/z. The dynamic exclusion time was set as 40 s and precursor ions with charge 1, 7, 8

and > 8 were excluded for MS2 analysis. The 24 benchmark fractions were analyzed using a 90-min gradient as follows: 2%-6%B in

1min; 6%-32%B in 64min; 32%-50%B in 13min; 50%-70%B in 3min; 70%-100%B in 1min and 100%B in 8min. The parameters

of MS were set the same as SCLC proteomic samples.

For phosphoproteomic analysis, the enriched phosphopeptides were re-suspended in 2%ACN/0.1% formic acid and half of each

fraction was analyzed using the same instrumentation and MS parameters as the global SCLC proteomic analysis, except for a

70-min LC gradient (2%-5% B in 1 min; 5%-32% B in 48 min; 32%-45% B in 10 min; 45%-100% B in 3 min and 100% B in

8 min). And the 24 benchmark fractions for monitoring SCLC phosphoproteomic analysis were analyzed using a 70-min gradient

as follows: 5%-8% B in 4 min; 8%-35% B in 46 min; 35%-50% B in 10 min; 50%-100% B in 2 min and 100% B in 8 min. The pa-

rameters of MS were set the same as described above.

Genomic and Transcriptomic Data Processing
Somatic variant calling

To detect single nucleotide variant (SNV) and small insertion/deletion (INDEL), the Genome Analysis Toolkit (GATK, version 4.0.6.0)

best practice guideline was followed. After excluding low-quality reads, qualified paired-end WES sequencing reads were aligned to

human reference genome (hg38) with BWAMEM (version 0.7.15).85 The resulting BAM files were further processed with Picard tools

(version 2.9.0, http://broadinstitute.github.io/picard/ ) to remove PCR duplicates. Subsequently, recalibration and INDEL realignment

was implemented using GATK modules IndelRealigner and BaseRecalibrator. Cross-sample contamination was assessed with

GATK module CalculateContamination tool with a 5% threshold. SNVs and INDELs were detected using MuTect2 tools107

embedded in GATK from SCLC tumor and paired non-tumor samples, then filtered out short tandem repeat region downloaded

from UCSC table browser, and finally annotated using Funcotator from GATK.

Analysis of significantly mutated genes

Significance of mutated genes were evaluated by MutSigCV (version 1.4)86 in GenePattern, and mutated genes were deemed sig-

nificant above the background mutation rate if q value was less than 0.05.

Mutation frequency in TU-SCLC and previous studies

Mutation frequencies for three previous SCLC studies were obtained from George et al.,9 Sivakumar et al.,11 and Umemura et al.10

cohort. The frequencies of mutated genes in Figure 1B were compared from TU-SCLC cohort using Fisher’s exact test.

Tumor mutational burden (TMB)

For each patient, we calculated the TMB score as previously described.108 Briefly, TMB = total number of truncating mutations 3

1.5 + total number of non-truncating mutations 3 1.0. Truncating mutations included nonsense, frame-shift deletion, frame-shift

insertion, and splice-site, while non-truncating mutations included missense, in-frame deletion, in-frame insertion, and nonstop. Si-

lent mutations were excluded from these analyses since they did not result in an amino acid change. Truncatingmutations were given

a higher weight considering their higher deleterious effects on gene function than non-truncating mutations. Based on the median

value of TMB scores, we classified the patients into TMB-high and TMB-low group.

Correlation of somatic mutation and clinical parameters

To evaluate the correlation between somatic mutation genes and clinical parameters, we first separated SCLC patients into younger

(% 62 years, median age in TU-SCLC cohort) and older group or TMB-high and TMB-low group. Then Fisher’s exact test was em-

ployed to determine whether the mutation was enriched in a certain group as shown in Figure S1J.

Mutational signature analysis

Mutational signatures in 112 SCLC tumors were explored by non-negative matrix factorization (NMF) approach.109,110 The 96 muta-

tional contexts generated by somatic SNVs based on six base substitutions (C > A, C > T, C >G, T > A, T >G, and T >C) were referred

as input data to infer their contributions to detected mutations. SignatureAnalyzer87 was utilized to evaluate the Bayesian variant of
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the NMF approach and discern the optimal number of signature profiles.87,111,112 Then, each profile of signatures was compared with

mutation patterns of validated cancer signatures reported from COSMIC database,113 and Cosine similarity analysis114,115 was used

to find the best match. The value of Cosine similarity ranged from 0 to 1, which indicated maximal dissimilarity to maximal similarity.

Neoantigen prediction

To predict neoantigen, OptiType (version 1.2.1)88 was used to identify the human leukocyte antigen (HLA) class I genotype (HLA-A,

HLA-B, HLA-C) in each specimen. NetMHCpan (version 3.0)89 was applied to identify MHC ligands and predict the binding affinity of

peptides. Finally, peptides with robust binding affinity (IC50% 500 nM) were referred as predicted neoantigen, while those with weak

binding affinity (binding affinity parameters > 1,000 nM) were excluded.

Somatic copy-number alteration (SCNA) analysis

To estimate SCNAs in each tumor, paired BAM files from SCLC tumor and paired non-tumor samples were processed by the R pack-

age CopywriteR (version 2.6.1.2).90 With default parameters, circular binary segmentation (CBS) algorithm116 implemented in the

CopywriteR package was used for copy number segmentation. Segment-level ratios were calculated and log2 transformed.

Then, Genomic Identification of Significant Targets in Cancer (GISTIC2.0, version 2.0.23) algorithm91 was used to identify signif-

icantly amplified and deleted arm-level and focal-level SCNA events, with q value less than 0.25 considered significant. A log2 ratio

cut-off of ± 0.8 was used to define SCNA amplification and deletion. Default value was used for other parameters.

Chromosomal instability index (CIN)

The CIN score reflects the overall copy-number alterations across the whole genome. From the SCNA segment results, we used a

weighted-sum approach to summarize the chromosome instability for each sample as previously described.23 Specifically, the ab-

solute log2 ratios of all segments within a chromosome were weighted by the segment length and summed to infer the instability

score for the chromosome. Then, the genome-wide chromosome instability index was calculated by summing the instability score

of all 22 autosomes.

RNA quantification

After removal of adaptors and low-quality reads, RNA-seq cleaned sequence data were aligned to human reference sequence hg38

using STAR (version 2.7.6a).92 The resulting BAM files were analyzed for gene expression using Salmon (version 1.3.0)93 against a

transcriptomic reference GENCODE (version 22, https://www.gencodegenes.org). Then, the resulting transcripts per million (TPM)

values of protein-coding genes were log2 transformed and data rows of redundant gene symbols were aggregated by calculating

the average expression values.

Proteomics and Phosphoproteomics Data Processing
Database searching of MS data

All MS raw files were searched against the human Swiss-Prot database containing 20,431 sequences (downloaded in August, 2018)

using MaxQuant (version 1.6.5.0).84 TMT 11-plex (SCLC tumor and NAT samples) and TMT 10-plex (benchmark samples and PDX/

CDX samples) based MS2 reporter ion quantification was chosen with reporter mass tolerance set as 0.003 Da. The purities of TMT

labeling channels were corrected according to the kit LOT number. The PIF (precursor intensity fraction) filter value was set at 0.5.

Enzyme digestion specificity was set to Trypsin and maximum two missed cleavages were allowed. Carbamidomethyl cysteine was

set as fixed modification. Oxidized methionine, protein N-term acetylation, lysine acetylation, asparagine and glutamine (NQ) dea-

midation were set as variable modifications. For phosphorylation data analysis, phospho (STY) was also chosen as a variable modi-

fication. The tolerances of first search and main search for peptides were set at 20 ppm and 4.5 ppm, respectively. A cut-off of 1%

FDRwas applied at the peptide, protein, and site level. Aminimum of 7 amino acids was required for peptide identification. For phos-

phosite localization, the localization probability > 0.75 was considered as confident phosphosite.

Data normalization

Global protein and phosphosite abundance from 224 samples were measured in 23 sets of TMT 11-plex labeling experiment, which

identified 11,209 proteins at gene-level (unique peptides R 2) and 62,881 confident phophosites (localization probability > 0.75). In

each set of TMT experiments, relative protein or phosphosite abundance was calculated as the ratio of sample abundance to internal

reference sample using the reporter ion intensities. Then the relative abundances were log2 transformed and normalized using me-

dian centering method, resulting these proteins and phosphosites having a log TMT ratio value centered at zero. Among the data,

7,010 proteins and 7,388 phosphosites were quantified across all the samples. DreamAI ensemble algorithm (https://github.com/

WangLab-MSSM/DreamAI) was applied to impute missing values by DreamAI R package. Only those proteins and phosphosites

with a missing rate less than 50% were imputed. After imputation, 9,559 proteins and 26,979 phosphosites were used for down-

stream analyses.

Data Quality Control
Sample labeling checking

Sample labeling check is a critical data quality control step before integrated multi-omics analysis. In this study, we checked tissue

annotations (tumor or NAT), gender annotations (male or female), and sample matching among RNA-seq, proteomics and phospho-

proteomics data. We performed principal component analysis (PCA) using factoextra R package (version 1.0.7) independently on the

RNA-seq, global proteome and phosphoproteome data respectively. As expected, tumor and NAT samples were clearly separated

(Figure S3A), suggesting that the tissue annotation was consistent with given information. Then, gender-specific marker gene
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expression (XIST, DDX3Y, RPS4Y1)117 was used to evaluated the gender annotation. Sample matching was assessed by a pairwise

alignment procedure as previously described94 by comparing RNA-seq and proteomics, proteomics and phosphoproteomics, and

RNA-seq and phosphoproteomics data. This analysis was performed using MODMatcher R package (version 0.1.0) (https://github.

com/integrativenetworkbiology/Modmatcher).

Batch effect assessment and proteomics quality control

During the LC-MS/MS analysis of global proteomics and phosphoproteomics, we established a quality control procedure by periodic

analysis of full process replicates of a benchmark sample to assess the instrument performance. The benchmark sample was pre-

pared from five pairs of hepatocellular carcinoma tissues and their adjacent non-tumor liver tissues as previously reported.105 We

assessed the Pearson correlation of log2 (TMT126/TMT127N) ratios across the longitudinal benchmark samples and observed

high reproducibility across the TMT plexes measurement (Figure S1C). In addition, we calculated the numbers of peptides, proteins

and phosphosites identified in each TMT set (Figure S1A). PCA for both proteomics and phosphoproteomics data showed no

obvious batch effect across the 23 TMT batches (Figure S1B). The density plots of log2 TMT ratios for proteins and phosphosites

identified in each sample showed that all samples conformed to an expected unimodal distribution evaluated by dip statistic test

(P > 0.05, diptest R package, version 0.75-7) (Figure S1D). Finally, protein complex correlation analysis and co-expression

network-based gene function prediction for KEGG pathways were performed using RNA-seq and proteomics data as previously

described118 by OmicsEV (https://github.com/bzhanglab/OmicsEV) (Figures S1E and S1F).

Integrated Analysis
mRNA-protein correlation analysis

A total of 9,428 genes or proteins with less than 50%missing values were used to measure gene-wise and sample-wise mRNA and

protein correlations (Figures S1G and S1H). Spearman’s correlation coefficient and corresponding P value were calculated for

each mRNA-protein pair across tumors and NATs separately and for each individual sample by cor.test function in R (Table S1).

Further, adjusted P value was calculated using the Benjamini-Hochberg (BH) procedure and a cut-off of 0.01 was determined

as statistical significance. In order to explore the biological functions enriched for genes with low and high protein-RNA correla-

tions, Spearman’s correlation coefficient was used as the ranking metric for gene set enrichment analysis (GSEA) using the

GSEA software (version 4.1.0).98 Molecular Signatures Database (MSigDB, c2.cp.kegg.v7.1.symbols.gmt)83 was used for enrich-

ment analysis.

Defining cancer-associated genes

Cancer-associated genes (CAGs) were compiled from genes defined by Bailey et al.119 and cancer-associated genes listed in Mer-

tins et al.120 and adapted from Vogelstein et al.121 as previously described.5 A total of 593 genes were defined as CAGs.

SCNA-driven cis and trans effects

The cis and trans regulation of SCNAs on mRNA, protein and phosphoprotein expression were determined using Spearman’s cor-

relation and visualized by multiOmicsViz R package. P values were calculated to assess the statistical significance of the correlation

values and corrected for multiple testing using Benjamini-Hochberg procedure. As a result, FDR < 0.05 was considered as statisti-

cally significant positive or negative correlations for CNA-mRNA, CNA-protein and CNA-phosphoprotein correlations. In addition,

261 genes which had significant cis-effects at mRNA, protein and phosphoprotein levels were filtered to keep the ones with signif-

icant differential protein expression between tumors and NATs (BH adjusted P value < 0.01,Wilcoxon signed-rank test). This resulted

in a number of 223 SCNAs (Table S2) and were further used to perform GO biological processes enrichment analysis. To identify

genes with most significant trans-effects at protein level, three filter criteria were used as follows: 1) belongs to CAGs; 2) amplification

or deletion frequency > 10% in the TU-SCLC cohort; 3) the number of significant protein-level trans events of the SCNA ranked for top

10 (Spearman’s correlation, adjusted P value < 0.05) (Table S2).

Mutation effects on RNA, proteome and phosphoproteome

We examined the effects of somatic mutation genes as shown in Figure 1B on the RNA, protein and phosphosite levels. Briefly, sam-

ples were classified into mutated and wild-type (WT) groups, and Wilcoxon ranked-sum test was used to identify differentially ex-

pressed RNA, proteins and phosphosites. For FAT1mutation, signed -log10P valuewas used as the pre-ranked list for GSEA analysis

using WebGestalt96 (http://www.webgestalt.org/).

Tumor-NAT differential expression analysis

Differential expression analysis was performed for tumors and paired NATs using the Wilcoxon signed-rank test. P values were

adjusted using the Benjamini-Hochberg method. Each feature was required to be non-missing values. Proteins or phosphosites

(collapsed into gene-level) differentially expressed between tumors and NATs (BH adjusted P value < 0.01, log2FC > 1 or < -1)

were further used for over-representation analysis by WebGestalt.96

A linear mixedmodel implanted in R package lmerTest102 was used to correct for stromal and immune content for 107 patients with

an ESTIMATE score for both tumors and NATs as previously described.122 Specifically, the sample type and z-scored ESTIMATE

score were used as fixed effects and the patient was used as random effect. Benjamini-Hochberg adjusted P value < 0.01 was

considered as significant. Furthermore, we filtered proteins with at least 2-fold upregulated in more than 90% tumor-NAT pairs,

and defined as SCLC-associated proteins. Then, proteins of specific type or function including cancer related genes, enzymes,

plasma proteins, drug targets (FDA approved drug targets and potential drug targets) were annotated by the Human Protein Atlas82

(HPA, https://www.proteinatlas.org).
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Kinase activity prediction

Activated kinases were filtered using two methods. Firstly, we performed phosphosite-specific signature enrichment analysis

(PTM-SEA)21 to infer kinase activity from the phosphorylation of its substrates using the PTM signatures database (PTMsigDB,

version 1.9.0) (https://github.com/broadinstitute/ssGSEA2.0/tree/master/db/ptmsigdb). Phosphosites with less than 50% missing

values were applied to Wilcoxon signed-rank test between tumors and NATs. P values were then log-transformed and signed ac-

cording to the fold change. The resulting signed -log10 P value for each site was used as the ranking metric for PTM-SEA. The pa-

rameters were used as follows: statistic – area.under.RES; output.score.type – NES; correl.type – rank; weight – 1; nperm – 1,000;

min.overlap – 5. P value for each signature was derived from 1,000 random permutations and further adjusted by BHmethod. Signa-

ture of kinases with adjusted P value < 0.05 and NES score > 0 were considered to show increased activity in SCLC tumors. In addi-

tion, activated kinases were inferred from significantly increased phosphorylation of their sites annotated as ‘‘enzyme activity

induced’’ from PhosphoSitePlus database20 (https://www.phosphosite.org). Kinases with a median phosphorylation fold change

greater than the median protein fold change were considered as significantly activated.

Cancer/testis antigen prediction

Cancer-testis (CT) antigens were downloaded from CTdatabase (http://www.cta.lncc.br).81 The CT antigens that overlapped with

SCLC proteomics data were selected for further analysis and those overexpressed at least 2-fold in tumors compared with NATs

in more than 10% of samples were displayed in Figure S3I.

Prognostic biomarker analysis for SCLC

To identify potential protein prognostic biomarkers, four filter criteria were used as follows (also shown in Figure S4A): 1) the proteins

should be quantified in all samples; 2) the correlation coefficient betweenmRNA and protein expression should be > 0.7; 3) the candi-

date proteins should be differentially expressed between tumors and NATs with adjusted P value < 0.01 (Wilcoxon signed-rank test,

BH adjusted) and fold change > 2 at both mRNA and protein levels; 4) we stratified the TU-SCLC patients into two groups based on

the median expression of each protein. Kaplan-Meier curve with log rank test was used to visualize the survival difference and Cox

proportional hazard model was used to evaluate the hazard ratio (HR) for each protein. The candidate proteins should significantly

correlate with the overall survival (log rank P value < 0.01, and HR (high/low) > 2 for upregulated or < 0.5 for downregulated proteins).

Immune subtype identification and downstream analysis

The abundances of 64 different cell types in 107 SCLC tumors and paired NAT samples were computed via xCell33 (https://xcell.ucsf.

edu/) using the RNA-seq data (Table S5). Then unsupervised clustering was implemented on these cell signatures using the NMF R

package (version 0.23.0). We chose k = 3 based on the maximal cophenetic correlation coefficients using 50 iterations, and subse-

quently repeated the NMF analysis using 200 iterations. Furthermore, ESTIMATE algorithm32 was used to derive the overall immune

score and stromal score for each sample based on RNA-seq data. Protein-based immune signatures for MHC proteins, stimulatory

and inhibitory immune modulators were calculated as the mean value of the protein expression for each gene set. Immune cytolytic

activity (CYT) scores were obtained by calculating the geometric mean of two key cytolytic effectors, granzyme A (GZMA) and per-

forin (PRF1) mRNA expression (TPM) per sample as previously reported.36

Immune scores correlation analysis

To identify the potential drivers of immunosuppression, ESTIMATE immune scores were correlated with proteomics data using

Spearman’s correlation analysis. Then, WebGestalt96 was used to perform GSEA for KEGG pathways using the signed -log10
P values. In order to further evaluate the correlation between immune scores and specific DNA repair pathways, we used a DDR

gene set containing unique proteins from a specific pathway as previously reported.39 Damage sensor scores were calculated based

on the protein expression of 9 DNA damage response genes.123 Gene set based scores were the mean protein expression of all

genes in that set (Figure S5E).

Inferred DNA repair, replication stress, STING pathway, EMT, and E2F activity scores

All scores were inferred by single sample gene set enrichment analysis (ssGSEA)124 method from GSVA package.97 The Hallmark

DNA_repair, replication_stress, epithelial_mesenchymal_transition, E2F_targets gene sets were used to calculate the DNA repair

scores, replication stress scores, EMT scores and E2F activity scores using the proteomics data, respectively. STING pathway ac-

tivity scores were inferred from Reactome ‘STING mediated induction of host immune response’ gene set based on mRNA

expression.

Unsupervised multi-omics clustering

As previously described,5,8,125,126 non-negative matrix factorization (NMF)95 was used to perform unsupervised clustering of tumor

samples based on mRNA, protein, and phosphosite expression data. Briefly, we required all features quantified in more than 50%

samples and the remaining missing values were imputed as described above. All data tables were then concatenated and features

with the lowest standard deviation (bottom 5th percentile) across all samples were removed for subsequent analysis. Each row in the

data matrix was further scaled and standardized such that all features from different data types were represented as z-scores. Since

NMF requires a non-negative input matrix, we converted the z-scores in the data matrix into a non-negative matrix as follows: 1)

create one data matrix with all negative numbers zeroed; 2) create another data matrix with all positive numbers zeroed and the signs

of all negative numbers removed; 3) concatenate both matrices resulting in a data matrix twice as large as the original, but containing

only positive values and zeros and hence appropriate for NMF.

The resulting matrix was then subjected to NMF analysis via the NMF R-package (version 0.23.0) and using the ‘brunet’ factoriza-

tionmethod.109 A range of clusters between k = 2 - 8were tested to determine the optimal factorization rank k (number of clusters). 50
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iterations were set for each k. We calculated the cophenetic correlation coefficients and chose the k with maximal cophenetic cor-

relation (Figure S6A). After determining the optimal factorization rank k, the NMF analysis was repeated using 1,000 iterations to

achieve stability and a robust result.

Comparison of the multi-omics subtyping with previous transcriptional subtyping

Transcriptional subtype signature genes were obtained from previously reported NMF-derived gene list.13 NMF analysis was per-

formed to define transcriptional subtypes based on the mRNA expression (TPM values) for overlapped genes in TU-SCLC cohort,

and comparison results were evaluated with our multi-omics subtypes by Fisher’s exact test.

Subtype signature protein and phosphosite identifications

For each of the multi-omics subtype, the subtype signature protein and phosphosite were defined as those significantly more abun-

dant in that subtype compared with all the other three subtypes (Student’s t test). The resulting subtype signature protein and phos-

phosite (collapsed into gene-level) were used to perform over-representation analysis to identify enriched GO biological processes,

KEGG and Reactome127 pathway analysis via WebGestalt.96

Multi-omics single-sample gene set enrichment analysis

To further analyze biological characteristics of multi-omics subtypes, we performed ssGSEA124 to identify the pathway alterations

among the four SCLC subtypes. To achieve pathway enrichment scores for each sample, R package GSVA97 and Hallmark pathway

gene sets (MSigDB database v.7.1) were used with a least 10 overlapping genes. A Wilcoxon ranked-sum test was applied subse-

quently to define pathways differentially expressed between one subtype to others. P values were adjusted via the Benjamini-

Hochberg procedure.

Neuroendocrine (NE) score inference

SCLC neuroendocrine (NE) scores were calculated based on a gene set of 25 neuroendocrine and 25 non-neuroendocrine genes

established by a reported study.128 For each sample, the NE score was calculated with the following formula: NE score = (correl

NE - correl non-NE)/2, where correl NE or non-NEwas the Pearson correlation between expression of the 50 genes in our SCLC sam-

ples and the expression of these genes in the NE or non-NE cell line group from Zhang et al.128 The resulting NE score ranged from -1

to +1, which indicates non-NE phenotype to NE phenotype. RNA-seq and global proteomics data-based NE scores were highly

correlated (Pearson correlation coefficient higher than 0.96).

Stemness score inference

Weused stemness score to assess the degree of oncogenic dedifferentiation as previously described.129 Specifically, the pluripotent

stem cell samples (ESC and iPSC) were downloaded from the Progenitor Cell Biology Consortium (PCBC) dataset130,131 and prepro-

cessed. Then, one-class logistic regression (OCLR)machine-learning algorithm132 was used to build a predictivemodel on the PCBC

dataset. mRNA expression values for 107 SCLC tumor samples and 107 NAT samples were applied to calculate the stemness index.

The function of TCGAanalyze Stemness deriving from TCGAbiolinks R package133 was used and previous published workflow134

was followed, with ‘‘stemSig’’ argument set as PCBC_stemSig.

Proliferation index inference

Proliferation index was defined as multi-gene proliferation scores (MGPS) and was calculated as described previously.135 Specif-

ically, MGPS were the mean expression of gene-wise z-scores for mRNA expression for all cell cycle-regulated genes identified

by Whitfield et al. in each sample.136

Assessment of therapy response

To predict the therapy response of ATR inhibitor (ATRi) combined with TOP1 inhibitor (TOP1i), ATRi and TOP1i response score was

inferred based on a gene set of 225 differentially expressed genes between responding and non-responding tumors from an SCLC

clinical trial as previously described.51 The score was calculated by the median expression of upregulated genes – the median

expression of downregulated genes using the RNA-seq data.

Development and application of a signature-based classifier for multi-omics subtype

Subtype signature genes, proteins and phosphosites were defined as described above. Then, we performed stratified random sam-

pling for subtype with a ratio of 7:3. We divided our SCLC dataset into a training dataset of 74 samples and a test dataset of 33 sam-

ples. Deep learning models could extract useful information from original data to a large extent, and show high performance in pro-

cessing complex data. Herewe used the Rplatform to develop anH2O-based deep learningmodel.137 To construct a fully connected

neural network, five hidden layers, in which 100, 200, 100, 200 and 100 nodes were allocated respectively. When training themodel, a

Tanh function was used as an activation function for the neural network, and a training procedure was repeated during 500 epochs.

Using the expression information of the identified signature list, a fully connected neural network prediction classifier was con-

structed using the H2O103 (https://www.h2o.ai) deep learning platform (version 3.36.0.3).

Survival analysis

We used Kaplan-Meier analysis to explore survival differences associated with TMB status, mutation signature dominant groups,

SCNA status, immune subtypes, and somatic mutation status. For continuous variables, including mRNA, protein and phosphosite

expression, maximally selected rank statistics (maxstat) implemented in survimer R package (version 0.4.9) was performed to deter-

mine the optimal cutpoint for selected samples. For protein biomarkers selection and validation, samples were stratified based on the

median protein abundance by MS data or immunohistochemistry scores (H-scores). Kaplan-Meier plots, log rank tests and Cox pro-

portional hazards regression for statistical significance were implemented via the survminer (version 0.4.9) and survival (version 3.2-

13) packages in R. Patients died for operation-associated complication were excluded for survival analysis.
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Immunohistochemistry Analysis
Apart from the use for the multi-omics analysis, the rest SCLC tumor and NAT samples were applied to construct tissue microarray

(TMA). Briefly, paired SCLC tumor and NAT samples were paraffin-embedded, and then inspected by H&E staining. Representative

areas were marked on the paraffin-embedded tissues and 2.0-mm-diameter cylinder was used for the construction of TMA. Finally,

78 patients with complete clinical prognosis information were applied for survival analysis. Immunohistochemistry (IHC) analysis was

applied in TMA to validate the expression of MYC, HMGB3 and CASP10 expression. After deparaffinization, slides were prepared for

antigen retrieval and blockade of endogenous peroxidase. Then, slides were stained with MYC antibody (1:50, Santa Cruz Biotech-

nology, SC-40), HMGB3 antibody (1:200, Abcam, ab75782) and CASP10 antibody (1:50, Abcam, ab32155), respectively. Subse-

quently, slides were incubated with secondary antibody and finally covered by cover slips. Immunostained slides were scored using

the H-score method as previously described,138 H-score = intensity of positive staining 3 percentage of positively-stained cells.

H-scores range from 0 to 300 and the median value was termed as the cutoff to classify the groups. In addition, to validate the prog-

nostic value of HMGB3 and CASP10, another independent cohort consisting of 111 SCLC tumors were collected from Shanghai

Pulmonary Hospital (Tongji University, Shanghai, China) from December 2014 to July 2019 and were used for IHC assays in the

same way. These patients received surgical resection and received no prior anticancer treatments.

Functional Experiments
Plasmid construct

33Flag-HMGB3 plasmid was constructed by cloning coding sequence of human HMGB3 into the lentiviral vector pLEX-MCS-

CMV-puro.

Lentivirus production and infection

Lentiviral packaging and subsequent generation of stable cell lines by infection were done as previously described.139 Briefly,

HEK293T cells were co-transfected with lentiviral vectors and the packaging plasmids psPAX2 and pMD2.G using polyethylenimine

(Sigma). Lentivirus-containingmediumwas collected after 48 hours and supplemented with 20mg/mL Polybrene (Sigma). H345 cells

were infected by mixing the lentivirus-containing medium and the cell culture medium for 6 hours. Virally infected cells were selected

by puromycin (Beyotime Biotechnology) for 96 hours.

RNA interference

The siRNAs were synthesized by Biotend Company. All siRNA transfections were performed with Lipo3000 Transfection Reagent

(Thermo Fisher Scientific) at 50 nM final concentration according to the manufacturer’s protocol. The siRNA transfected cells

were harvested for western blot or qPCR assays 48 hours after transfection. Oligonucleotide sequences are shown in the key re-

sources table.

Western blot analysis

Cells were harvested with EBC lysis buffer (50 mM Tris HCl, pH 8.0, 120 mM NaCl, 0.5% Nonidet P-40) supplemented with pro-

tease inhibitors (Selleck) and phosphatase inhibitors (Selleck). 30 mg of total proteins were separated by SDS-PAGE gel and

blotted with primary antibodies. The details about primary antibodies were listed below with vendor and catalog numbers:

anti-HMGB3 (1:3000; ABclonal, A15064), anti-Tubulin (1:10000; Santa Cruz Biotechnology, SC23948), anti-FLAG (1:3000;

Sigma, F7425). Peroxidase-labeled anti-mouse (1:5000; DAKO, P0217) or anti-rabbit (1:5000; DAKO, P0260) IgG secondary anti-

body was used. The western blot gel image was obtained with an Minichemi 610 chemiluminescent imager (Sagecreation, Bei-

jing, China).

Real-time quantitative PCR

Total RNA was extracted from cells using TRIzol Reagent (Invitrogen) according to the manufacturer’s instructions. Total RNA was

reversely transcribed into first-strand cDNA using the PrimeScript�RT reagent Kit with gDNA Eraser (Takara). The cDNAs were

then used for real-time PCR (qPCR) on a Roche LightCycler 96 Real-Time quantitative PCR System (Roche) using TB Green� Pre-

mix Ex Taq� II (Takara). GAPDH was served as an internal control. The relative quantification of gene expression was analyzed by

the 2�66Ct method. The primers used for qPCR analyses are as follows:

GAPDH Forward: 5’-GGAGCGAGATCCCTCCAAAAT-3’, Reverse: 5’-GGCTGTTGTCATACTTCTCATGG-3’

STMN1 Forward: 5’-TCAGCCCTCGGTCAAAAGAAT-3’, Reverse: 5’-TTCTCGTGCTCTCGTTTCTCA-3’

TMA7 Forward: 5’-AAGGTGGCAAGAAGAAGCCA-3’, Reverse: 5’-CTTCCCCGCGGCCTTC-3’

HMGB3 Forward: 5’-CCCAGAGGTCCCTGTCAATTT-3’, Reverse: 5’-CGATCATAGCGCACTTTATCTGC-3’

ITGB4 Forward: 5’-GCAGCTTCCAAATCACAGAGG-3’, Reverse: 5’-CCAGATCATCGGACATGGAGTT-3’

CLDN10 Forward: 5’-GCATGTAGAGGACTTATGATCGC-3’, Reverse: 5’-TCCGACTTTGGTACACTTCATTC-3’

VTN Forward: 5’-TGACCAAGAGTCATGCAAGGG-3’, Reverse: 5’-ACTCAGCCGTATAGTCTGTGC-3’

PKP2 Forward: 5’-GTGGGCAACGGAAATCTTCAC-3’, Reverse: 5’-CCAGCCTTTAGCATGTCATAGG-3’

LAMC2 Forward: 5’-GACAAACTGGTAATGGATTCCGC-3’, Reverse: 5’-TTCTCTGTGCCGGTAAAAGCC-3’

Cell proliferation Assay

For cell proliferation assay, H345 cells (13 103 cells) were seeded in 96-well plates. CCK-8 solution (Beyotime Biotechnology, C0039)

at the final concentration of 10%was added to the wells, and absorbance at 450 nmwasmeasured 2 hours after incubation to repre-

sent the relative cell numbers.
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Transwell migration assay

For H345 cell migration, 5 3 104 cells were plated onto Transwell filters with 8-mm pores, a 24-well plate chamber insert (Corning).

The top of the insert was supplemented with serum-free medium, while the bottom was supplemented with RPMI 1640 with 10%

FBS. Cells were incubated for 24 hours and washed 2 times with PBS before fixed with methanol for 30 min. Then cells were stained

with crystal violet for 30 min and washed 2 times with PBS. Cells at the top of the insert were scraped with a cotton swab while the

positively stained cells at the bottom of the insert were photographed and examined under the microscope. Five visual fields were

randomly chosen to calculate the number of migrated cells, each assay was repeated at least three times independently.

Chromatin immunoprecipitation sequencing (ChIP–seq)

For ChIP-seq, 43 107 H345 cells were harvested, cross-linked, and fragmented using the truChIP�Chromatin Shearing Kit (Covaris)

according to themanufacturer’s instructions to achieve a DNA shear length of approximately 200 bp. Solubilized chromatin was incu-

bated with the appropriate antibody (anti-FLAG; Sigma, F3165) and eluted using the EZ-ChIP� Chromatin Immunoprecipitation Kit

(Millipore). Then, libraries were prepared using NEBNext� Ultra� DNA Library Prep Kit for Illumina (NEB, USA) and assessed by the

Agilent 2200 TapeStation (Agilent Technologies, USA) and Qubit (Thermo Fisher Scientific, USA). Sequencing was performed using

an Illumina platform with 150 bp paired-end reads.

After pre-processing with Trimmomatic tools (version 0.36) and quality control by FastQC software, the sequencing reads were

aligned to a reference genome (UCSC hg38) using Bowtie2 (version 2.4.2).99 MACS2 (version 2.2.7)100 was employed to perform

peak calling and Homer software (version 4.11.1) was used to annotate the Peaks. GO and KEGG pathway enrichment analysis

were performed using the R package clusterProfiler (version 4.2.0).101

Drug Response Experiments
Cell line-based drug response test

Cells were seeded in 96-well plates at 2,500 cells per well and cultured for 24 hours, followed by different concentrations of alisertib,

barasertib and AMG-900 treatment for 72 hours. Cell viability was assessed using 60 mL of Cell Titer Glo reagent (Promega), and lumi-

nescence was determined using a Bio Tek Synergy NEO.

Xenograft tumorigenesis assay

For the establishment of human SCLC cell line xenografts, nudemice (BKCo.) were subcutaneously injectedwith 13 106 cells (H146,

H82, H446, H69, H526, DMS114). For the establishment of SCLC PDXmodels, transbronchoscopic lung biopsies from 16 SCLC pa-

tients were collected and embedded in matrigel for injection into the right flank of severe combined immune deficiency (SCID) mice

(SLAC Co.). Details were performed as previously described.59

Multi-omics profiling of tumor tissues from xenograft mouse models

Tumor tissues from 16 patient-derived tumor xenograft (PDX) and 6 SCLC cell line-derived xenograft (CDX)mousemodels were used

for multi-omics profiling. The method of RNA extraction, RNA sequencing was exactly the same as that of the mentioned above. For

proteomic and phosphoproteomic analysis, approximately 20-50mg tumor tissues were resuspended in 300 mL SDT lysis buffer (4%

SDS, 0.1 M Tris-HCl, 0.1 M DTT, pH 7.6), sonicated at 20% amplitude for 2 min (5 s on, 5 s off), denatured and reduced at 95�C for

5 min. Then, lysates were centrifuged at 12,000 g for 10min and protein concentration of the supernatant was determined using tryp-

tophan-based fluorescence quantification method.140 16 samples with relative high protein concentration were selected and mixed

in equal protein amount, yielding an internal reference sample for PDX/CDX TMT-based proteomic analysis. Three TMT 10-plex

(Thermo Fisher Scientific) sets were conducted to label these individual mouse tumor tissue and mixed samples. The methods of

tryptic digestion, TMT 10-plex labeling, high-pH RPLC peptides fractionation and phosphopeptides enrichment were the same as

SCLC patient samples.

For proteomic analysis, LC-MS/MS analysis was performed with a nanoflow Easy nLC 1200 UHPLC (Thermo Fisher Scientific)

coupled to a Q Exactive HF-X (Thermo Fisher Scientific) over a 120-min separation gradient at a flow rate of 300 nL/min (2%-5%

B in 1 min; 5%-32% B in 94 min; 32%-45% B in 15 min; 45%-65% B in 3 min; 65%-100% B in 1 min; 100% B in 6 min). The RP

chromatographic column and the solvent A/B was the same as above. MS parameters were as follows: MS1 resolution –

120,000, mass range – 350 – 1,700m/z, AGC target – 3e6, maximum IT – 50ms, charge state exclude – 1,7,8,>8, dynamic exclusion –

40 s, top 20 ions selected for MS2; MS2: resolution – 45,000, HCD energy – 32, isolation window – 1.0 m/z, AGC target – 1e5,

maximum IT – 120 ms.

For phosphosproteomic analysis, LC-MS/MS analysis was performed with a nanoflow Easy nLC 1200 UHPLC (Thermo Fisher Sci-

entific) coupled to aQExactiveHF (ThermoFisher Scientific) over a 90-min separation gradient at a flow rate of 300 nL/min (2%-25%B

in 70min; 25%-32%B in 10min; 32%-100%B in 2min; 100%B in 8min). The parameters of Q Exactive HFmass spectrometer were

set the same as described above.

Cell line and xenograft model-based drug response test

4 PDXmodels (SC022, SC222, SC224, SC234) and 4 SCLC cell line xenografts (H69, DMS114, H446, H146) were used for evaluation

of specific compounds or drugs. When tumor volume had reached 60-200 mm3, the mice were randomized into different treatment

groups. For nmf1 SCLC models (SC234, H146), mice were orally administered with anlotinib (6 mg/kg) or alisertib (30 mg/kg) for

consecutive 14 days respectively. For nmf3 SCLC models (SC022, SC224, DMS114), mice were orally administered with anlotinib

(6 mg/kg) for consecutive 14 days respectively. For nmf4 SCLC models (SC222, H446), mice were orally administered with alisertib

(30 mg/kg) for consecutive 14 days respectively. For evaluation of the effects of E/P in H69 (nmf1) and SC222 (nmf4) models, mice
e13 Cell 187, 184–203.e1–e14, January 4, 2024
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were i.p. injection with cisplatin (DDP, 6 mg kg-1 d-1 intraperitoneally) at day 1 and etoposide (VP16, 10 mg kg-1 d-1) at days 1-3. One

week was considered as one cycle. Nude mice were generally given two or more cycles of E/P treatment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification methods and statistical analysis methods for single-omics andmulti-omics analyses were mainly described and refer-

enced in the respective method details subsections.

Additionally, standard statistical tests were used to analyze the data, including but not limited to Wilcoxon test, Fisher’s exact test,

Chi-square test, Kruskal-Wallis test, log rank test and Cox proportional hazards regression model. For categorical variables versus

categorical variables, Fisher’s exact test or Chi-square test was used; for categorical variables versus continuous variables, Stu-

dent’s t test, Wilcoxon test or Kruskal-Wallis test was used; and for continuous variables versus continuous variables, Pearson or

Spearman’s correlationwas used. All statistical testswere two-sided, and statistical significancewas consideredwhenP value < 0.05

unless otherwise indicated.Multiple comparisonswere adjusted by the Benjamini-Hochberg procedure. Kaplan-Meier plots (log rank

test) were used to describe overall survival. Variables associated with overall survival were identified using univariate Cox propor-

tional hazards regression models. Significant factors in univariate analysis were further subjected to a multivariate Cox regression

analysis. Statistical analyses were performed using R unless explained otherwise.

For functional experiments, each was repeated at least three times independently, and the results were shown asmean ± standard

error of themean (SEM). The statistical significance of differences was determined by Student’s t test using GraphPad Prism (version

8). Details can be found in results and Figure Legends.
Cell 187, 184–203.e1–e14, January 4, 2024 e14
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Figure S1. Data quality assessments and mutational profiles, related to Figure 1

(A) Barplots showing the numbers of identified peptides, proteins, and phosphosites across the 23 TMT sets.

(B) Principal-component analysis (PCA) plots of proteome and phosphoproteome separately for tumor and NAT samples. Samples analyzed in different TMT sets

are shown with different colors and shapes.

(C) Pearson correlation plots of longitudinal benchmark samples showing robust and accurate quantification reproducibility across several months of data

acquisition time bymass spectrometry. (Pearson’s correlation coefficients, proteomeR = 0.91–0.94, phosphoproteome: R = 0.92–0.95.) The benchmark samples

were interposed every three TMT 11 sets in proteome and phosphoproteome platform.

(D) Density plots of TMT protein/internal reference ratios and phosphosite/internal reference ratios showing no obvious protein degradation in tumor and NAT

samples. (Hartigans’ dip test, p > 0.05.)

(E) Boxplots showing quality assessment of proteomic and transcriptomic data based on protein complex correlation analysis.

(F) Scatterplots comparing the gene function prediction accuracy using co-expression networks based on RNA-seq and TMT proteomics data. Network-based

gene function prediction was performed using the random walk-based network propagation algorithm for each KEGG pathway. Prediction performance was

evaluated using 5-fold cross validation and quantified based on the area under the receiver operating characteristic curve (AUROC). Red and blue indicate

pathways with >10% difference.

(G) Histograms of gene-wise correlation betweenmRNA and protein expression in SCLC tumors (top left) and NATs (top right). Different GSEA enrichment KEGG

pathways representing different levels of correlation are annotated (bottom).

(H) Violin plot showing the comparison of tumors and NATs sample-wise correlation between mRNA and protein expression (Wilcoxon ranked-sum test).

(I) TP53 and RB1 somatic mutation and copy-number variation in SCLC.

(J) Correlation between somatic mutations and clinical features in TU-SCLC cohort, significant correlations were highlighted in orange (Fisher’s exact test).

Patients were grouped based on the median age of 62 years and the median tumor mutation burden (TMB) value of 5.45.

(K) Trinucleotide motif frequency plots and enriched mutational signatures identified in TU-SCLC cohort. Four mutational signatures were inferred, matching

previously describedmutational signatures associatedwith exposure to tobacco (smoking) mutagenes (cos sim = 0.913 and 0.49with COSMIC 4), defective DNA

mismatch repair (cos sim = 0.871 with COSMIC 6) and APOBEC cytidine deaminse (C>G) (cos sim = 0.977 with COSMIC 13).
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Figure S2. Proteogenomic consequences of genetic aberrations, related to Figure 2

(A) Chromosome arm-level SCNAs in TU-SCLC cohort.

(B) Focal-level SCNAs with selected genes labeled in the significantly peak regions.

(C) Venn diagrams depicting mRNA/proteins with positive (upper) or negative (lower) trans CNA-mRNA and CNA-protein correlations with chromosome 5q loss.

(D) Enriched GO biological processes terms for proteins with negative trans CNA-protein correlations with chromosome 5q loss.

(E) Heatmap of chromosome 5q copy-number loss and mRNA/protein/phosphoprotein abundance of genes involved in DNA synthesis, DNA replication and

repair, and cell cycle progression pathways. The right panel shows the correlation between CNAs in chromosome 5q and mRNA/protein/phosphoprotein

expression (Spearman’s correlation, p < 0.01).

(F) Enriched KEGG pathway terms for phosphoproteins with positive or negative trans CNA-phosphoprotein correlations with RB1 deletion.

(G) Kaplan-Meier curves for overall survival of patients with or without RB1 copy-number deletion (log rank test).

(H) Boxplots showing comparisons of mRNA and protein abundance for TP53, FAT1, and GNAS across tumor samples stratified by different mutation status

(Wilcoxon ranked-sum test, ns, not significant).

(I) Boxplots showing comparisons of TP53 S15, S315, and S392 phosphosite abundance between samples with TP53 missense/truncating mutations and WT

samples (Wilcoxon ranked-sum test, ns, not significant).
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Figure S3. Proteomic alterations in tumors and paired NATs, related to Figure 3

(A) Principal-component analysis (PCA) plots of mRNA, protein, and phosphosite in tumors (pink triangles) and paired NATs (blue circles).

(B) Kaplan-Meier curves for overall survival based on proteomic abundance of SCLC-associated proteins (log rank test). Proteins were classified by their function

as microtubule dynamics, DNA damage and repair, and transcriptional regulation. Patients were stratified by the optimal cutpoint using maximally selected rank

statistics (maxstat) on protein abundance. Numbers in parentheses represent the sample sizes for the involved groups.

(C and D) The impacts of STMN1 (C) and TMA7 (D) gene knockdown on H345 cell growth. Proliferation of indicated cells was measured by CCK8 method. The

efficiency of siRNA gene knockdown was validated by real-time qPCR and was displayed on the left of each panel. Data were represented as mean ± SEM

(Student’s t test), *p < 0.05, ***p < 0.001.

(E) Comparison of NE scores between CSCLC and pure SCLC tumors (Wilcoxon ranked-sum test).

(F) Boxplots showing the comparison of kinase protein or its activating site phosphorylation abundance between tumors and paired NATs (Wilcoxon signed-

rank test).

(G and H) Kaplan-Meier curves for overall survival based on CHEK1 protein (G) and CHEK1 S317 phosphosite abundance (H) (log rank test). Patients were

stratified by the optimal cutpoint using maxstat on protein or phosphosite abundance. Numbers in parentheses represent the sample sizes for the involved

groups.

(I) Heatmap representing cancer testes (CT) antigens that were overexpressed at least 2-fold in tumors comparedwith paired NATs inmore than 10%of samples.

The percentage was indicated in the brackets. The upper barplots show TMB and predicted neoantigen counts in each sample. Samples are ordered by

decreasing TMB.

ll
Resource



Tumor vs NAT (Protein and mRNA)  
FC > 2 & FDR < 0.01 (up: n=412)

Tumor vs NAT (Protein and mRNA)  
FC < 0.5 & FDR < 0.01 (down: n=315)

Log rank P < 0.01 & HR (high / low)
 > 2 (n=6)

Log rank P < 0.01 & HR (high / low)
 < 0.5 (n=10)

mRNA-protein correlation > 0.7
(n=1421)

Protein expression in all samples
(n=7010)

A

H
&E

Tumor

C
AS

P1
0-

IH
C

NAT CASP10 (MS and IHC)

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time (months)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

CASP10 (IHC)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Time (months)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Validation cohort

P = 0.019High (n = 48)
Low (n = 63)

66
29

96
61
48
31
37
62
58

27
32
77
27
30
48Tight junction

Morphine addiction
EGFR tyrosine kinase inhibitor resistance

MAPK signaling pathway
Aldosterone synthesis and secretion

Arrhythmogenic right ventricular cardiomyopathy
Focal adhesion

Regulation of actin cytoskeleton
Cholinergic synapse

Longevity regulating pathway
Hippo signaling pathway
Rap1 signaling pathway

PI3K−Akt signaling pathway
Adherens junction

Axon guidance

0 2 4 6 8
−Log10 (P value)

130
68

104
130

109
119
92

143
136

129
134
136
131

128
141Cell adhesion molecule binding

Actin binding
Phospholipid binding

Small GTPase binding
Ras GTPase binding

Modulation of chemical synaptic transmission
Ras protein signal transduction

Axonogenesis
Regulation of Ras protein signal transduction

Regulation of small GTPase mediated signal transduction
Neuron to neuron synapse

Cell−cell junction
Cell cortex

Extrinsic component of plasma membrane
Cell leading edge

0 5 10 15
−Log10 (P value)

Type

GO_CC
GO_BP
GO_MF

B C

E F

D

H

G

P = 0.0014

P = 0.01

MS (High, n = 52)
MS (Low, n = 52)
H-score (High, n = 39)
H-score (Low, n = 39)

TU-SCLC cohort

0.0

0.5

1.0

1.5

2.0

ITGB4

R
el

at
iv

e
m

R
N

A
e x

pr
es

s i
o n ✱✱✱

✱✱✱
✱✱✱

✱✱✱
✱✱✱

0

5

10

15

20

25

R
el

at
iv

e
H

M
G

B
3

m
R

N
A

ex
p r

es
si

on

✱✱✱

✱✱✱

✱✱✱

siN
C

siI
TGB4-1

siI
TGB4-2 siN

C

siI
TGB4-1

siI
TGB4-2

0

50

100

150

200

R
el

at
iv

e
ce

ll
m

ig
ra

tio
n

(%
) ✱✱✱

✱✱✱
✱✱✱

✱✱✱
✱✱✱

EV Flag-HMGB3

Input

HMGB3

0

5

10

15

R
el

at
iv

e
H

M
G

B
3

m
R

N
A

ex
p r

es
s i

on

✱✱✱
✱✱✱

✱✱✱
0.0

0.5

1.0

1.5

2.0

VTN

R
el

at
iv

e
m

R
N

A
ex

p r
e s

si
o n ✱✱✱

✱✱
✱✱✱ ✱✱✱

✱✱✱

siN
C

siV
TN-1

siV
TN-2

siN
C

siV
TN-1

siV
TN-2

0

50

100

150

200

R
el

at
iv

e
ce

ll
m

ig
ra

tio
n

(%
) ✱

✱✱✱

✱✱✱
✱✱✱

✱✱

EV Flag-HMGB3

0

5

10

15

20

R
el

at
iv

e
H

M
G

B
3

m
R

N
A

ex
pr

es
si

on

✱✱✱
✱✱✱

✱✱✱
0.0

0.5

1.0

1.5

PKP2

R
el

at
iv

e
m

R
N

A
ex

p r
e s

si
on

✱✱
✱✱✱

✱
✱✱

✱✱

siN
C

siP
KP1-1

siP
KP1-2 siN

C

siP
KP2-1

siP
KP2-2

0

50

100

150

200

R
el

at
iv

e
ce

ll
m

ig
ra

tio
n

(%
) ✱✱✱

✱
✱ ✱✱✱

✱✱✱

EV Flag-HMGB3

siN
C

siC
LD

N10
-1

siC
LD

N10
-2

siN
C

siC
LD

N10
-1

siC
LD

N10
-2

0

50

100

150

200

R
el

at
iv

e
ce

ll
m

ig
ra

t io
n

(%
) ✱✱✱

✱✱✱
✱✱✱

✱✱✱
✱✱✱

EV Flag-HMGB3

0

5

10

15

20

R
el

at
iv

e
H

M
G

B
3

m
R

N
A

ex
p r

es
s i

on

✱✱✱

✱✱✱

✱✱✱
0.0

0.5

1.0

1.5

2.0

CLDN10

R
el

at
iv

e
m

R
N

A
e x

pr
es

si
on ✱✱

✱✱
✱ ✱

✱

siN
C

siL
AMC2-1

siL
AMC2-2 siN

C

siL
AMC2-1

siL
AMC2-2

0

50

100

150

200

R
el

at
iv

e
ce

ll
m

ig
ra

tio
n

(%
) ✱✱✱

✱✱✱
✱✱✱

✱✱✱
✱✱✱

EV Flag-HMGB3

0.0

0.5

1.0

1.5

LAMC2

R
el

at
iv

e
m

R
N

A
ex

p r
e s

si
on

✱✱✱
✱✱✱

✱
✱✱

✱✱✱

0

5

10

15

20

25

R
el

at
iv

e
H

M
G

B
3

m
R

N
A

ex
p r

es
si

on ✱✱✱
✱✱✱

✱✱✱

CLDN10

chr13:95,549,495-95,560,321

10 kb

[0 - 30]

[0 - 30]

chr17:75,721,117-75,736,753

15 kb

[0 - 30]

[0 - 30]

ITGB4

chr17:28,367,039-28,374,856

7,819 bp

[0 - 30]

[0 - 30]

VTN

chr1:183,234,253-183,243,825

9,574 bp

[0 - 30]

[0 - 30]

LAMC2

chr12:32,895,732-32,908,246

12 kb

[0 - 30]

[0 - 30]

PKP2

(legend on next page)

ll
Resource



Figure S4. Identification and validation of proteomic prognostic biomarkers, related to Figure 4

(A) Workflow for selecting potential SCLC prognostic proteins. FC, fold change; HR, hazard ratio.

(B) Representative H&E and IHC staining images for CASP10 on tumors and paired NATs (scale bars, 60 mm).

(C) Kaplan-Meier curves for overall survival based on CASP10 proteomic abundance or immunostaining scores (log rank test).

(D) Kaplan-Meier curves for overall survival based on CASP10 immunostaining scores in an independent SCLC cohort (n = 111) (log rank test).

(E and F) Representative KEGG (E) and GO (F) enrichment results for genes bound by HMGB3 from the ChIP-seq assay.

(G) ChIP-seq in H345 cells revealed binding peaks for HMGB3 on CLDN10, PKP2, ITGB4, VTN, and LAMC2 genes.

(H) The impacts of CLDN10, PKP2, ITGB4, VTN, and LAMC2 knockdown onHMGB3-overexpressed or parental H345 cell migration. The efficiency of siRNA gene

knockdown and HMGB3 overexpression was validated by real-time qPCR. Transwell migration assays of indicated cells were measured. Data were represented

as mean ± SEM (Student’s t test), *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure S5. Immune landscape of TU-SCLC cohort, related to Figure 5

(A) Boxplot showing comparison of ESTIMATE immune scores across different clinical parameters (Wilcoxon ranked-sum test for gender and histology, Kruskal-

Wallis test for smoking history and TNM stage).

(B) Kaplan-Meier curves for overall survival based on ESTIMATE immune scores (log rank test).

(legend continued on next page)
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(C) Kaplan-Meier curves for overall survival of patients with or without ZFHX3 mutation (log rank test).

(D) Enriched KEGG pathway terms for upregulated proteins in ZFHX3-mutant when compared with ZFHX3-WT tumors.

(E) Heatmap showing Spearman’s correlations between immune scores and proteomics-derived signatures for DNA damage response (DDR) gene sets.

Samples were ordered by immune scores as shown in the upper barplot.

(F and G) Boxplots showing comparison of protein or phosphosite expression between immune-cold and immune-hot tumors for DNA repair protein (G) and DNA

damage checkpoints (H) (Wilcoxon ranked-sum test).

(H) Spearman’s correlation among STING pathway activity and immune-related features.

(I) Boxplots showing comparison of protein expression between immune-cold and immune-hot tumors for cGAS-STING pathway proteins (Wilcoxon ranked-

sum test).

(J) Kaplan-Meier curves for overall survival based on proteomic abundance of cGAS-STING pathway proteins (log rank test). Patients were stratified by the

optimal cutpoint using maximally selected rank statistics (maxstat) on protein abundance. Numbers in parentheses represent the sample sizes for the involved

groups.

(K) Scatterplot comparing DNA repair score and cGAS-STING pathway protein and the protein expression of STING1 with DNA repair protein and DNA damage

checkpoints (Spearman’s correlation).
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Figure S6. Characterization of the integrated multi-omics subtypes, related to Figure 6

(A) Cophenetic correlation coefficients for a range of factorization ranks. The maximal cophenetic correlation coefficient was observed for rank k = 4.

(B) Sample distribution across different clinical parameters in each subtype (Fisher’s exact test).

(C) Enrichment of cancer hallmark gene sets in multi-omics subtypes detected by single sample gene set enrichment analysis (ssGSEA).

(D) Heatmap depicting all somatic copy-number aberrations (SCNAs) detected in TU-SCLC cohort. Genes are ordered by chromosomal location and samples are

organized by multi-omics subtype and separately clustered for each subtype.

(E) Boxplots showing mesenchymal and epithelial proteins across multi-omics subtypes (Kruskal-Wallis test).

(F) Heatmap showing MYC family genes CNA and relative mRNA and phosphosite expression across multi-omics subtypes.

(G) Representative IHC staining images for MYC protein on tumor and NAT samples in each subtype (scale bars, 60 mm).

(H) Boxplot showing comparison of MYC S347, MYC S348, and MYC S161 phosphosite abundance across subtypes (Wilcoxon ranked-sum test).

(I) Boxplots showing MYC S347, MYC S348, and MYC S161 phosphosite expression between tumors and paired NATs in each subtype, respectively (Wilcoxon

signed-rank test).

(J) Heatmap showing the wide range of expression levels for immune-related features across multi-omics subtypes. Within each subtype, samples were ordered

by increasing ESTIMATE immune scores.

(K) Boxplot showing comparison of ESTIMATE immune scores across multi-omics subtypes (Wilcoxon ranked-sum test).
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Figure S7. Subtype-specific therapeutic strategies in SCLC, related to Figure 7

(A) Comparisons of molecular features inferred from proteogenomic data across multi-omics subtypes (Wilcoxon ranked-sum test). Proliferation index was

inferred from mRNA-based multi-gene proliferation score (MGPS).135 E2F activity and replication stress activity were inferred by ssGSEA.

(B) Boxplots showing comparisons of response score toward ATR and TOP1 inhibition across subtypes in TU-SCLC cohort, George et al. SCLC cohort,9 and

SCLC cell lines52 (Kruskal-Wallis test).

(C) Boxplot showing comparison of DLL3 protein expression and REST mRNA expression across multi-omics subtypes (Wilcoxon ranked-sum test).

(D) Comparisons of DLL3 mRNA expression across subtypes from George et al. SCLC cohort9 (Kruskal-Wallis test).

(E) Experimental workflow of multi-omics profiling of tumor tissues from xenograft mouse models.

(F) Boxplot showing comparison of response score toward ATR and TOP1 inhibition across subtypes in SCLC PDX/CDX tumor models (Kruskal-Wallis test).

(G) Tumor growth in H69 tumor-bearing mice treated with E/P (etoposide + cisplatin) or vehicle. Tumor volumes were monitored every other day by caliper. Data

are represented as mean ± SEM (n = 5 mice per group, Student’s t test).

(H) Tumor growth in SC224 tumor-bearingmice treated with anlotinib or vehicle. Tumor volumeswere monitored every other day by caliper. Data are represented

as mean ± SEM (n = 5 mice per group, Student’s t test).

(I) Statistical analyses of tumor weights (left) andmouse weights (right) from SC224 PDXmodels treated with anlotinib or vehicle. Data are represented as mean ±

SEM (Student’s t test).

(J) Tumor growth in DMS114 tumor-bearing mice treated with anlotinib or vehicle. Tumor volumes were monitored every other day by caliper. Data are repre-

sented as mean ± SEM (n = 5 mice per group, Student’s t test).

(K) Statistical analyses of tumor weights (left) and mouse weights (right) from DMS114 CDX models treated with anlotinib or vehicle. Data are represented as

mean ± SEM (Student’s t test).

(L) Tumor growth in H446 tumor-bearingmice treated with alisertib or vehicle. Tumor volumes weremonitored every other day by caliper. Data are represented as

mean ± SEM (n R 4 mice per group, Student’s t test).

(M) Statistical analyses of tumor weights (left) and mouse weights (right) from H446 CDXmodels treated with alisertib or vehicle. Data are represented as mean ±

SEM (Student’s t test).

(N) The tumors from H446 CDX models treated with alisertib or vehicle.

(O) Tumor growth in SC234 tumor-bearing mice treated with anlotinib, alisertib, or vehicle. Tumor volumes were monitored every other day by caliper. Data are

represented as mean ± SEM (n R 4 mice per group, Student’s t test).

(P) Statistical analyses of tumor weights (left) andmouse weights (right) from SC234 PDXmodels treated with anlotinib, alisertib, or vehicle. Data are represented

as mean ± SEM (Student’s t test).

(Q) The tumors from SC234 PDX models treated with anlotinib, alisertib, or vehicle.
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